首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of lithium polysulfides on the cycling of a lithium electrode and the corrosion rate of lithium cathodic deposits in sulfolane electrolytes is studied. Lithium polysulfides are found to affect the shape of polarization curves, the overpotential of electrode processes, and the cycling time. The presence of lithium polysulfides in electrolyte systems increases the cycling time of a lithium electrode and positively affects the quality of lithium cathodic deposits. A suggested reason for the positive effect of lithium polysulfides is the appearance of a surface film on metallic lithium: this film has quite high protective properties but does not inhibit electrochemical processes.  相似文献   

2.
二次电池的能量密度已成为推动电动汽车和便携式电子产品技术向前发展的重要指标。使用石墨负极的锂离子电池正接近其理论能量密度的天花板,但仍难以满足高端储能设备的需求。金属锂负极因其极高的理论比容量和极低的电极电位,受到了广泛关注。然而,锂沉积过程中枝晶的生长会导致电池安全性差等问题。电解液对金属锂的沉积有着至关重要的影响。本文设计了一种独特的电解槽体系来进行柱状锂的沉积,研究了不同电解液体系(1mol·L-1LiPF6-碳酸乙烯酯/碳酸二乙酯(EC/DEC,体积比为1:1)、1 mol·L-1 LiPF6-氟代碳酸乙烯酯(FEC,体积分数5%)-EC/DEC (体积比为1:1))对金属锂沉积的影响。对两种电解液中金属锂沉积物长径比的研究表明,电解液的组分可以显著地影响金属锂的沉积形貌,在加入氟代碳酸乙烯酯(FEC)添加剂之后,柱状锂的直径从0.3–0.6μm增加到0.7–1.3μm,长径比从12.5下降到5.6。长径比的降低有助于减小金属锂和电解液的反应面积,提高金属锂负极的利用率和循环寿命。通过考察循环后锂片的表面化学性质,发现FEC的分解增加了锂表面固态电解质界面层中氟化锂(LiF)组分的比例,提高了界面层中锂离子的扩散速率,减少了锂的成核位点,从而给予锂核更大的生长空间,降低了沉积出的柱状锂的长径比。  相似文献   

3.
三元锂离子电池容量衰减机理研究进展   总被引:1,自引:0,他引:1  
三元锂离子电池主要是指使用镍钴锰酸锂(NCM)或镍钴铝酸锂(NCA)作为正极材料的锂离子电池,三元锂离子电池广泛应用于电动汽车、3C电子产品、储能等领域。然而,三元锂离子电池的循环寿命已成为其进一步发展的最大障碍,因此了解三元锂离子电池的容量衰退机理具有重要意义。三元锂离子电池的衰退机理主要包括五个方面:晶体结构的改变和相变、活性材料的损失、电解质的分解和消耗、可脱嵌锂离子的损耗以及固体电解质界面的形成。本文总结了近年来相关方面的研究进展,以期更全面地总结三元锂离子电池的容量衰减机理,并对三元锂离子电池的应用前景进行了展望。  相似文献   

4.
《Analytical letters》2012,45(7):565-574
Abstract

Li FT-NMR was used for the detection of different lithium species in human serum. Two serum samples from mentally ill patients undergoing lithium treatment were studied. Both samples gave spectra with a major peak corresponding to aqueous lithium ion and a much smaller peak at ?0.3 ppm relative to the lithium ion peak. Two serum samples from normal persons were spiked with lithium but the resulting spectra showed only the lithium ion peak.  相似文献   

5.
目前商业化锂离子电池常用的锂盐LiPF6,对水极其敏感,热稳定性差,尤其是在高温条件下的应用存在着一定的安全隐患.种类多且环境友好的新型有机硼酸锂盐越来越受到人们的重视.本文综述了近年来几种锂盐的合成方法,电化学性能,各自存在的优点和不足以及本课题组在聚合硼酸锂盐方向取得的系列研究进展,并对锂盐和聚合物电解质的发展方向进行了展望.  相似文献   

6.
We report calculations using a previously reported model of lithium perchlorate in polyethylene oxide in order to understand the mechanism of lithium transport in these systems. Using an algorithm suggested by Voter, we find results for the diffusion rate which are quite close to experimental values. By analysis of the individual events in which large lithium motions occur during short times, we find that no single type of rearrangement of the lithium environment characterizes these events. We estimate the free energies of the lithium ion as a function of position during these events by calculation of potentials of mean force and thus derive an approximate map of the free energy as a function of lithium position during these events. The results are consistent with a Marcus-like picture in which the system slowly climbs a free energy barrier dominated by rearrangement of the polymer around the lithium ions, after which the lithium moves very quickly to a new position. Reducing the torsion forces in the model causes the diffusion rates to increase.  相似文献   

7.
The electron density near the lithium nucleus in the species LiH, LiH+, Li2, Li2+, LiH2+, and Li2H+ was analyzed by transforming the SCF molecular orbitals into a sum of atomic contribnutions, for both core and valence orbitals. These “hybrid-atomic” orbitals were used to compare: electron densities, orbital polarizations, and orbital mean kinetic energies with the corresponding lithium atom quantities. Core-orbital electron densities at the lithium nucleus were observed to increase by up to 0.5% relative to the lithium atom 1s orbital. Lithium cores also exhibited polarization but, surprisingly, in the direction away from the internuclear region. Similar dramatic changes were seen in the electron densities of the valence orbitals of lithium: The electron density at the nucleus for these orbitals increased two-fold for homonuclear species and twenty-fold for heteronuclear triatomic species relative to the electron density at the nucleus in lithium atom. The polarization of the valence orbital electronic charge, in the vicinity of the lithium nucleus, was also away from the internuclear region. The mean “hybrid-atomic” orbital kinetic energies associated with the lithium atom in the molecules also showed changes relative to the free lithium atom. Such changes, accompanying bond formation, were relatively small for the lithium core orbitals (within 0.2% of the value for lithium atom). The orbital kinetic energies for the lithium valence electrons, however, increased considerably relative to the lithium atom: By a factor of about 2 in homonuclear diatomics, by a factor of 7 in heteronuclear diatomics, and by a factor of 11 in the triatomic species. In summary, the total electronic density (core plus valence) at the lithium nucleus remained remarkably constant for all of the species studied, regardless of the effective charge on lithium. Thus, the drastic changes noted in the individual lithium orbitals occurred in a cooperative fashion so as to preserve a constant total electron density in the vicinity of the lithium nucleus. In all cases, bond formation was accompanied by an increase in the orbital kinetic energy of the lithium valence orbital. We suggest that these two observations represent important and significant features of chemical bonding which have not previously been emphasized.  相似文献   

8.
When a cation-exchange membrane swollen with propylene carbonate was placed in tight contact with lithium foil, an ion-exchange reaction of lithium ions with the cation-exchange membrane occurred. The assembly exhibited properties of a lithium cell (3.0-3.2 V without load). The ion-exchange capacity of various cation-exchange membranes and their degree of swelling with propylene carbonte were related to the capacity of the formed lithium cell. A discharge current of 0.32 mA was observed through a 3 cm2 cell. Analysis of lithium ions in the membrane phase after discharge revealed that the ion-exchange reaction of lithium ions with the cation-exchange groups of the membrane was directly related to the current discharge of the cell. However, the formed lithium cell showed high self-discharge.  相似文献   

9.
《Tetrahedron: Asymmetry》2006,17(13):2021-2027
Several asymmetric 1,2-additions of various organolithium reagents (methyllithium, n-butyllithium, phenyllithium, lithioacetonitrile, lithium n-propylacetylide, lithium phenylacetylide) to aldehydes are shown to result in decent to excellent enantiomeric excesses (65–98%) when performed in the presence of a chiral lithium amido sulfide. The chiral lithium amido sulfides invariably exhibited higher levels of enantioselectivity in all the reactions tested, compared to the structurally similar chiral lithium amido ethers and the chiral lithium amide without a chelating group.  相似文献   

10.
Lithium reduction at a graphite electrode in molten lithium chloride was studied at temperatures from 650 to 900 °C using cyclic voltammetry and chronoamperometry. It was found that, during cathodic polarization, lithium intercalation into graphite occurred before deposition of metallic lithium started. This process was confirmed to be rate-controlled by the diffusion of lithium in the graphite. When the cathodic polarization potential was more negative than that for metallic lithium deposition, exfoliation of graphite particles from the electrode surface was observed. This was caused by fast and excessive accumulation of lithium intercalated into the graphite, which produced mechanical stress too high for the graphite matrix to accommodate. The erosion process was abated once the graphite surface was covered by a continuous layer of liquid lithium. These results are of relevance to the mechanism of carbon nanotube and nanoparticle formation by electrochemical synthesis in molten lithium chloride.  相似文献   

11.
Lithium metal is an ideal electrode material for future rechargeable lithium metal batteries. However, the widespread deployment of metallic lithium anode is significantly hindered by its dendritic growth and low Coulombic efficiency, especially in ester solvents. Herein, by rationally manipulating the electrolyte solvation structure with a high donor number solvent, enhancement of the solubility of lithium nitrate in an ester-based electrolyte is successfully demonstrated, which enables high-voltage lithium metal batteries. Remarkably, the electrolyte with a high concentration of LiNO3 additive presents an excellent Coulombic efficiency up to 98.8 % during stable galvanostatic lithium plating/stripping cycles. A full-cell lithium metal battery with a lithium nickel manganese cobalt oxide cathode exhibits a stable cycling performance showing limited capacity decay. This approach provides an effective electrolyte manipulation strategy to develop high-voltage lithium metal batteries.  相似文献   

12.
Lithium metal is an ideal electrode material for future rechargeable lithium metal batteries. However, the widespread deployment of metallic lithium anode is significantly hindered by its dendritic growth and low Coulombic efficiency, especially in ester solvents. Herein, by rationally manipulating the electrolyte solvation structure with a high donor number solvent, enhancement of the solubility of lithium nitrate in an ester‐based electrolyte is successfully demonstrated, which enables high‐voltage lithium metal batteries. Remarkably, the electrolyte with a high concentration of LiNO3 additive presents an excellent Coulombic efficiency up to 98.8 % during stable galvanostatic lithium plating/stripping cycles. A full‐cell lithium metal battery with a lithium nickel manganese cobalt oxide cathode exhibits a stable cycling performance showing limited capacity decay. This approach provides an effective electrolyte manipulation strategy to develop high‐voltage lithium metal batteries.  相似文献   

13.
在略高溫度下,通过氯化锂和金属钠在氫气氛中的反应,得到了氢化锂和氯化钠的混合物。用通常的Schlesinger法将得到的混合物用于合成氢化铝锂。反应的副产物是氯化锂和氯化钠的混合物,可用不同方法将其分离,所得氯化锂用于再循环。  相似文献   

14.
金属锂具有高理论比容量和低还原电位, 是锂电池阳极的理想材料之一. 但在长期循环充放电过程中, 金属锂因锂枝晶生长会导致出现界面恶化及能量损失严重等问题, 对锂金属电极与电解质表界面反应的优化是一个重要研究方向. 本文介绍了锂枝晶产生的危害, 从分析及抑制锂枝晶沉积两方面综合评述了为解决这一问题所采取的方法, 包括固态电解质界面形成机制和保护机理、 表面改性、 三维锂阳极和液态/固态电解质等方法, 总结了各种方法的优劣势, 并展望锂金属电池在能源领域的研究前景.  相似文献   

15.
Unstable electrode/solid‐state electrolyte interfaces and internal lithium dendrite penetration hamper the applications of solid‐state lithium‐metal batteries (SSLMBs), and the underlying mechanisms are not well understood. Herein, in situ optical microscopy provides insights into the lithium plating/stripping processes in a gel polymer electrolyte and reveals its dynamic evolution. Spherical lithium deposits evolve into moss‐like and branch‐shaped lithium dendrites with increasing current densities. Remarkably, the on‐site‐formed solid electrolyte interphase (SEI) shell on the lithium dendrite is distinctly captured after lithium stripping. Inducing an on‐site‐formed SEI shell with an enhanced modulus to wrap the lithium precipitation densely and uniformly can regulate dendrite‐free behaviors. An in‐depth understanding of lithium dendrite evolution and its functional SEI shell will aid in the optimization of SSLMBs.  相似文献   

16.
Unstable electrode/solid-state electrolyte interfaces and internal lithium dendrite penetration hamper the applications of solid-state lithium-metal batteries (SSLMBs), and the underlying mechanisms are not well understood. Herein, in situ optical microscopy provides insights into the lithium plating/stripping processes in a gel polymer electrolyte and reveals its dynamic evolution. Spherical lithium deposits evolve into moss-like and branch-shaped lithium dendrites with increasing current densities. Remarkably, the on-site-formed solid electrolyte interphase (SEI) shell on the lithium dendrite is distinctly captured after lithium stripping. Inducing an on-site-formed SEI shell with an enhanced modulus to wrap the lithium precipitation densely and uniformly can regulate dendrite-free behaviors. An in-depth understanding of lithium dendrite evolution and its functional SEI shell will aid in the optimization of SSLMBs.  相似文献   

17.
The carbonation of the adduct of poly(styryl)lithium with 1,1-diphenylethylene with gaseous carbon dioxide in benzene proceeds in high yield (>99%) compared to the inefficient functionalizations for poly(styryl)lithium (66%), poly(isoprenyl)lithium (59%), and polybutadienyl)lithium (27%). The quantitative carboxylation of poly(isoprenyl)lithium and poly(butadienyl)lithium requires the presence of larger amounts of Lewis bases such as THF ([THF]/[Li] = 300) or TMEDA ([TMEDA]/[Li] = 46) compared to poly(styryl)lithium in which a ratio of [TMEDA]/[Li] = 12 is effective. © 1992 John Wiley & Sons, Inc.  相似文献   

18.
锂金属具有高比容量(3860 mA·h/g)和低电化学电位(-3.04 V vs. SHE), 是一种极具潜力的新型电池负极材料. 然而, 锂金属电化学稳定性差, 导致电池循环寿命受限, 容易产生枝晶, 造成电池短路, 引发安全风险, 而其对空气及环境的高度敏感性也极大增加了电池制作的难度与成本, 限制了其应用推广. 改善锂金属负极的界面稳定性被认为是提升锂金属电池性能的重要途径. 本文通过简单直接的热压法在锂金属负极表面构筑了聚偏氟乙烯(PVDF)基双功能保护层, 使锂金属的空气稳定性提升至约120 min, 并延长了锂金属对称电池的循环寿命至约1200 h; 再通过在PVDF保护层内引入亲锂的SnO2粒子, 形成的无机有机复合保护层可以通过原位合金化反应提供锂沉积的形核位点, 在保持良好循环稳定性的基础上进一步降低成锂沉积的过电位, 极化过电位从0.016 V降低到0.007 V. 含有该保护层的全电池展现出约200次的长循环寿命与90%以上的高容量保持率, 在3C高倍率下放电比容量仍达127 mA·h/g. 提出的双功能电极界面保护层策略能有效提升锂金属负极空气稳定性和电化学性能.  相似文献   

19.
Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO3) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiNxOy on a working lithium metal anode with dendrite‐free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first‐principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries.  相似文献   

20.
The 6Li,15N coupling constants of lithium amide dimers and their mixed complexes with n-butyllithium, formed from five different chiral amines derived from (S)-[15N]phenylalanine, were determined in diethyl ether (Et2O), tetrahydrofuran (THF) and toluene. Results of NMR spectroscopy studies of these complexes show a clear difference in 6Li,15N coupling constants between di-, tri- and tetracoordinated lithium atoms. The lithium amide dimers with a chelating ether group exhibit 6Li,15N coupling constants of approximately 3.8 and approximately 5.5 Hz for the tetracoordinated and tricoordinated lithium atoms, respectively. The lithium amide dimers with a chelating thioether group show distinctly larger 6Li,15N coupling constants of approximately 4.4 Hz for the tetracoordinated lithium atoms, and the tricoordinated lithium atoms have smaller 6Li,15N coupling constants, approximately 4.9 Hz, than their ether analogues. In diethyl ether and tetrahydrofuran, mixed dimeric complexes between the lithium amides and n-butyllithium are formed. The tetracoordinated lithium atoms of these complexes have 6Li,15N coupling constants of approximately 4.0 Hz, and the 6Li,15N coupling constants of the tricoordinated lithium atoms differ somewhat, depending on whether the chelating group is an ether or a thioether; approximately 5.1 and approximately 4.6 Hz, respectively. In toluene, mixed trimeric complexes are formed from two lithium amide moieties and one n-butyllithium. In these trimers, two lithium atoms are tricoordinated with 6Li,15N coupling constants of approximately 4.6 Hz and one lithium is dicoordinated with 6Li,15N coupling constants of approximately 6.5 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号