首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphology of ceria nanoparticles prepared by spray pyrolysis (SP) from cerium (III) acetate and cerium (III) nitrate hydrate precursors were characterized by transmission electron microscopy. It was observed that using the nitrate as a precursor, particles containing multiple pores in the core can be prepared preferentially as opposed to the acetate precursor, when particles with predominantly a single pore were obtained. It was also found that the number of pores in the particles strongly correlates with the particle diameter. It is shown that predominantly multiporous particles for possible catalytic applications may be obtained by selecting particles with diameters between 50 and 100 nm and using cerium nitrate hydrate as a precursor. A mechanism leading to formation of multiporous ceria nanoparticles in the case of using the nitrate precursor in the SP process is discussed based on thermogravimetric analysis (TGA) data.  相似文献   

2.
Ceria-based materials are used in industrial applications such as catalyst supports, carbon monoxide reduction catalysts, and solid oxide fuel cell electrolytes. Various applications require different morphological particles. The ceria particles with various morphologies from the precursors of cerium(III) acetate hydrate, cerium(IV) nitrate hydrate, and cerium(IV) ammonium nitrate were prepared by spray pyrolysis (SP) because SP has the potential for simple and continuous process. The precursor behaviors and the particle morphologies were characterized by thermogravimetric analysis and by transmission electron microscopy. Four main morphologies of solid spherical, hollow spherical with a single pore, hollow concave, and hollow spherical with multiple pores were observed. The experimental results suggest that the morphological formation mechanism is highly correlated with the factors of precursor solubilities, solvent evaporation rates (droplet diameters), and precursor melting temperatures. In addition, total concentrations of cerium(III) in the ceria particles from various precursors were examined using X-ray photoelectron spectroscopy.  相似文献   

3.
4.
Silver-dispersed mesoporous silica was in situ synthesized in aerosol phase. The solidification of silica was catalyzed in the presence of the silver, which increased the order and d values of the mesophase at given reactor temperature. Silver nanoparticles grew confined in the pores when the atomic % of silver to Si was below 10 and the pore wall turned to be impermeable above 400 °C. Silver permeated through the pore wall below 400 °C to grow freely in the carrier gas. The mesophase deteriorated using spray pyrolysis above 800 °C due to the further densification of silica, or above 10 at.% of silver due to the excessive growth within the phase. The highest dispersion of silver ~4 nm in diameter with the highest order of the mesoporosity was obtained at 600 °C with 5 at.% silver. Calcination following the spray pyrolysis further densified the silica phase to freeze the growth of silver particles as well as lower the d value of the mesophase.  相似文献   

5.
Mössbauer spectroscopy was used in this study to investigate magnetite nanoparticles, obtained by spray pyrolysis and thermal treatment under H2 reduction atmosphere. Room temperature XRD data indicate the formation of magnetite phase and a second phase (metallic iron) which amount increases as the time of reduction under H2 is increased. While room temperature Mössbauer data confirm the formation of the cubic phase of magnetite and the occurrence of metallic iron phase, the more complex features of 77 K-Mössbauer spectra suggest the occurrence of electronic localization favored by the different crystalline phase of magnetite at low temperatures which transition to the lower symmetry structure should occur at T ~120 K (Verwey transition).  相似文献   

6.
ZnO nanoparticles were synthesized by the continuous spray pyrolysis technique (CoSP) and the effect of applied voltage across the spray nozzle and an annular ground electrode during spray has been studied. X-ray diffraction and transmission electron microscopy studies showed that the product has (hexagonal) wurtzite structure with the average particle size decreasing from 18.5?nm to 12.9?nm in the presence of a high DC voltage (1?kV). The higher value of the absorption peak for the nanoparticles synthesized without voltage is supportive of this behavior. The films deposited by spin coating using these nanoparticles can be used for a variety of applications, particularly as photoelectrodes for dye-sensitized solar cells.  相似文献   

7.
In2O3:Sn (Indium Tin Oxide; ITO) films were prepared from a sol solution with highly crystalline ITO nanoparticles (less than 20 nm in size with 10 at.% Sn) which had been prepared by low-pressure spray pyrolysis (LPSP) in a single step. The ITO sol solution was prepared by dispersing LPSP-prepared ITO nanoparticles into ultra pure water. The nanoparticle ITO film was deposited on a glass substrate using a dip-coating method and then annealed in air at various temperatures. The optical transmittances of the ITO films were measured by UV–Vis spectrometry, and the films were found to have a high transparency to visible light (in the case of a film thickness of 250 nm annealed at 400°C, the transparency was in excess of 95% over the range λ=450–800 nm, with a maximum value near 100% at wavelengths above λ=700 nm). The optical transmittances of the films were influenced by the size of the ITO particle used, the film thickness and the annealing temperature. The ITO films showed a minimum resistivity of 9.5×10−2 Ω cm, and their resistivity was affected by both the ITO particle size and the annealing temperature used.  相似文献   

8.
Gold and gold-silver nanoparticles prepared by flame spray pyrolysis (FSP) were characterized by electron microscopy, in situ X-ray absorption spectroscopy (XANES and EXAFS), X-ray diffraction (XRD) and their catalytic activity in CO oxidation. Within this one-step flame-synthesis procedure, precursor solutions of dimethyl gold(III) acetylacetonate and silver(I) benzoate together with the corresponding precursor of the silica, iron oxide or titania support, were sprayed and combusted. In order to prepare small metal particles, a low noble metal loading was required. A loading of 0.1-1 wt.% of Au and Ag resulted in 1-6 nm particles. The size of the noble metal particles increased with higher loadings of gold and particularly silver. Both scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDXS) and X-ray absorption spectroscopy (XAS) studies proved the formation of mixed Au-Ag particles. In case of 1% Au-1% Ag/SiO2, TEM combined with electron spectroscopic imaging (ESI) using an imaging filter could be used in addition to prove the presence of silver and gold in the same noble metal particle. CO oxidation in the presence of hydrogen was chosen as a test reaction sensitive to small gold particles. Both the influence of the particle size and the alloying of gold and silver were reflected in the CO oxidation activity.  相似文献   

9.
Fine powder of cubic Y2O3:Eu phosphor was synthesized and simultaneously deposited on fused silica slides by low-temperature flame-assisted spray pyrolysis in premixed propane/air flames. By adding ethylene glycol and citric acid to the precursor solution, morphology of phosphor particles could be improved. The intensity of the photoluminescence (PL)-emission of the phosphor screens deposited by the modified technique, when excited by ultraviolet (UV)-light with the wavelength of 254 nm, did not exceed that of the screens deposited without the polymeric additives. However, in vacuum UV, phosphors produced with the addition of polymers perform significantly better than the ordinary “no-polymer” FASP-coatings.  相似文献   

10.
The broadband inter-configurational (4f15d1→4f2) emission of Pr3+ doped in lanthanum orthophosphate (LaPO4) and in calcium pyrophosphate (Ca2P2O7) has been investigated under plasma excitation. The synthesis by spray pyrolysis at moderate temperature followed by a controlled annealing proves to be a very efficient way to produce good quality UVC emitting phosphor Ca1.92Pr0.04Na0.04P2O7 (α phase). The emission of this phosphor in the wavelength range 200-350 nm has been measured with a prototype device, which can be employed for anti-microbial testing.  相似文献   

11.
Nano-sized ZnO particles with a narrow size distribution and high crystallinity were prepared from aqueous solutions with high concentrations of Zn2+ containing salts and citric acid in a conventional spray pyrolysis setup. Structure, morphology and size of the produced material were compared to ZnO material produced by simple spray pyrolysis of zinc nitrates in the same experimental setup. Using transmission electron microscopy and electron tomography it has been shown that citric acid-assisted spray pyrolysed material is made up of micron sized secondary particles comprising a shell of lightly agglomerated, monocrystalline primary ZnO nanoparticles with sizes in the 20–30 nm range, separable by a simple ultrasonic treatment step.  相似文献   

12.
We have prepared thin film cathode materials and thin film electrolytes at temperatures ranging from 400°C to 600°C by a spray pyrolysis technique. The sols used to prepare the films are made from simple inorganic salts and non toxic, inexpensive diols. The sols can be sprayed in an air atmosphere to prepare films of the desired crystalline materials. Paper presented at the 1st Euroconverence on Solid State Ionics, Zakynthos, Greece, 11–18 Sept. 1994  相似文献   

13.
Cadmium stannate thin films were prepared by spray pyrolysis technique using cadmium acetate and tin(II) chloride precursors at substrate temperatures 450 °C and 500 °C. XRD pattern confirms the formation of orthorhombic (1 1 1) cadmium stannate phase for the film prepared at substrate temperature of 500 °C, whereas, films prepared at 450 °C are amorphous. Film formation does not occur at substrate temperature from 300 to 375 °C. SEM images reveal that the surface of the prepared Cd2SnO4 film is smooth. The average optical transmittance of ∼86% is obtained for the film prepared at substrate temperature of 500 °C with the film thickness of 400 nm. The optical band gap value of the films varies from 2.7 to 2.94 eV. The film prepared at 500 °C shows a minimum resistivity of 35.6 × 10−4 Ω cm.  相似文献   

14.
Al-doped zinc oxide (AZO) thin films have been prepared by spray pyrolysis (SP) technique of zinc acetate and aluminium nitrate, and the effect of thickness on structural and optical properties has been investigated. The structural and optical characteristics of the AZO films were examined by X-ray diffraction (XRD) and double-beam spectrophotometry. These films, deposited on glass substrates at an optimal substrate temperature (TS = 450 °C), have a polycrystalline texture with a hexagonal structure. Transmission measurements showed that for visible wavelengths, the AZO films have an average transmission of over 90%. The optical parameters have been calculated. The dependence of the refractive index, n, and extinction coefficient, k, on the wavelength for the sprayed films is also reported. Optical band gap of AZO is 3.30 and 3.55 eV, respectively, depending on the film thicknesses.  相似文献   

15.
ZnO films were deposited on glass substrate by using spray pyrolysis method. Films were deposited at different solution molarities 0.02 and 0.1 M. The films are highly transparent in the visible range of the electromagnetic spectrum with a transmission reaching up values to 90%. Band gaps were calculated as 3.24 and 3.28 eV with the help of transmission spectrums. When the solution molarity of the sprayed solution is increased from 0.02 to 0.1 M, carrier concentrations of the films increase from 1.6×1019 cm−3 to 5.1×1019 cm−3. Temperature-dependent conductivity measurements of these conducting and transparent films also showed, for the first time, a metal-semiconductor transition (MST). The deposited ZnO films show metallic conductivity above ∼420 K and semiconducting behavior at temperatures below it.  相似文献   

16.
Undoped ZnO thin films have been deposited onto glass substrates by spray pyrolysis. The structural, electrical and optical properties were studied on thin films, prepared from precursor solutions with varying the ethanol concentrations. X-ray diffraction studies have shown polycrystalline nature of the films with a hexagonal wurtzite-type structure. The preferential orientation plane (1 0 0) of the ZnO thin film is found to be sensitive to ethanol concentration. The texture coefficient (TC) and grain size value have been calculated. Also ethanol concentration was found to have significant effect on sheet resistivity of the films.  相似文献   

17.
SnS thin films were deposited by chemical spray pyrolysis using cost-effective and low-toxicity sources materials like tin (II) chloride dihydrate and thiourea as sources of tin and sulphur, respectively. We have studied the properties of sprayed SnS thin films with [S]/[Sn] ratios were varied from 1 to 4 in order to optimize these parameters. X-ray diffraction was used for analyzing the films structure, Raman Spectroscopy for assessing the films quality and structure, scanning electron microscope (SEM) for surface morphology and energy dispersive energy (EDS) for compositional element in samples, atomic force microscopy (AFM) for the topography of surfaces and optical spectroscopy for measuring transmittances and then deducing the band gap energies. All films obtained are polycrystalline with (111) as preferential direction for films with [S]/[Sn] ratio equals to one while for [S]/[Sn] ratios from 2 to 4 the main peak becomes (101) and the (111) peak decreases in intensity. Raman spectroscopy confirms the presence of only one SnS phase without any additional parasite secondary phases. SEM images revealed that films are well adhered onto glass surface with rounded grain. AFM confirms this result being films with [S]/[Sn] = 1 the roughest and also with the largest grain size. EDS results show an improvement of stoichiometry with the increase of the [S]/[Sn] ratio. From optical analysis, it is inferred that the band gap energy decreases from 1.83 to 1.77 eV when the [S]/[Sn] ratio changes from 2 to 4.  相似文献   

18.
Uniform and adherent cobalt oxide thin films have been deposited on glass substrates from aqueous cobalt chloride solution, using the solution spray pyrolysis technique. Their structural, optical and electrical properties were investigated by means of X-ray diffraction (XRD), scanning electron micrograph (SEM), optical absorption and electrical resistivity measurements. Along with this, to propose Co3O4 for possible application in energy storage devices, its electrochemical supercapacitor properties have been studied in aqueous KOH electrolyte. The structural analysis from XRD pattern showed the oriented growth of Co3O4 of cubic structure. The surface morphological studies from scanning electron micrographs revealed the nanocrystalline grains alongwith some overgrown clusters of cobalt oxide. The optical studies showed direct and indirect band gaps of 2.10 and 1.60 eV, respectively. The electrical resistivity measurement of cobalt oxide films depicted a semiconducting behavior with the room temperature electrical resistivity of the order of 1.5 × 103 Ω cm. The supercapacitor properties depicted that spray-deposited Co3O4 film is capable of exhibiting specific capacitance of 74 F/g.  相似文献   

19.
Optical and Quantum Electronics - In this paper, a variable-coefficient generalized nonlinear Schrödinger equation, which can be used to describe the nonlinear phenomena in the optical fiber,...  相似文献   

20.
Thin films of ZnO have been prepared on glass substrates at different thicknesses by spray pyrolysis technique using 0.2 M aqueous solution of zinc acetate. X-ray diffraction reveals that the films are polycrystalline in nature having hexagonal wurtzite type crystal structure. The resistivity at room temperature is of the order 10−2 Ω cm and decreased as the temperature increased. Films are highly transparent in the visible region. The dependence of the refractive index, n, and extinction coefficient, k, on the wavelength for a sprayed film is also reported. Optical bandgap, Eg, has been reported for the films. A shift from Eg = 3.21 eV to 3.31 eV has been observed for deposited films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号