首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The theory and practical applications of very slow (antisymmetric) optical plasmons are described. These plasmons can exist on thin metal films and filaments and (as standing waves) on metal spheres and ellipsoids. The material presented here extends the conventional concepts of electromagnetic modes of spaces, probability of spontaneous emission, construction of optical images, optical focusing, and the photon momentum. The reviewed achievements in this field have been obtained in the last years. The problem of the photon momentum in a medium has been a subject of irreconcilable disputes for nearly 100 years, beginning with Minkowski and Abraham’s famous papers. Various practical applications are considered, including experiments with the significant enhancement of atom spontaneous emission into a plasmon field mode of a nanoparticle; experiments on focusing optical radiation into a spot much smaller than the diffraction-limited one (the so-called almost ideal Pendry lens, which produces an image with details much smaller than the light wavelength); and, finally, a greatly increased (by factors of 10, 100, or more) photon momentum in plasmon.  相似文献   

2.
The specific optical characteristics which can be observed from noble metal nanostructured materials such as nanoparticles and nanoislands have wide variety of applications such as biosensors, solar cells, and optical circuit. Because, these noble metal nanostructures induce the increment of light absorption efficiency by the enhancing effect of electrical field from localized surface plasmon resonance (LSPR) excitation. However, the enhancing effects of electrical field from LSPR using simple structured noble metal nanostructures for several applications are not satisfactory. To realize the more effective light absorption efficiency by the enhancing effect of electrical field, quite different noble metal nanostructures have been desired for applying to several applications using LSPR. In this study, to obtain the more effective enhancing effect of electrical field, conditions for LSPR excitation using a gold-capped nanoparticle layer substrate are computationally analyzed using finite-difference time-domain (FDTD) method. From the previous research, LSPR excitation using such gold-capped nanoparticle layer substrates has a great potential for application to high-sensitive label-free monitoring of biomolecular interactions. For understanding of detailed LSPR excitation mechanism, LSPR excitation conditions were investigated by analyzing the electrical field distribution using simulation software and comparing the results obtained with experimental results. As a result of computational analysis, LSPR excitation was found to depend on the particle alignment, interparticle distance, and excitation wavelength. Furthermore, the LSPR optical characteristics obtained from the simulation analysis were consistent with experimentally approximated LSPR optical characteristics. Using this gold-capped nanoparticle layer substrate, LSPR can be excited easily more than conventional noble metal nanoparticle-based LSPR excitation without noble metal nanoparticle synthesis. Hence, this structure is detectable a small change of refractive index such as biomolecular interactions for biosensing applications.  相似文献   

3.
The coupling of local surface plasmon(LSP) of nanoparticle and surface plasmon(SP) mode produced by metal film can lead to the enhanced electromagnetic field, which has an important application in enhancing the fluorescence of quantum dots(QDs). Herein, the Ag nanocube and Ag film are used to enhance the fluorescence of CdSe QDs. The enhancement is found to relate to the sizes of the Ag nanocube and the thickness of the Ag film. Moreover, we also present the fluorescence enhancement caused by only SP. The result shows that the coupling between metal nanoparticles and metal film can realize larger field enhancement. Numerical simulation verifies that a nanocube can localize a strong electric field around its corner. All the results indicate that the fluorescence of QDs can be efficiently improved by optimizing the parameters of Ag film and Ag cubes.  相似文献   

4.
李嘉明  唐鹏  王佳见  黄涛  林峰  方哲宇  朱星 《物理学报》2015,64(19):194201-194201
研究光在微纳结构中的分布与传播, 实现在纳米范围内操纵光子, 对于微型光学芯片的设计有着重要意义. 本文利用聚焦离子束刻蚀方法, 在基底为石英玻璃的150 nm厚金膜上刻制了不同参数的阿基米德螺旋微纳狭缝结构, 通过改变入射光波长、手性、及螺旋结构手性和螺距等方式, 在理论和实验上系统地研究了阿基米德螺旋微纳结构中的表面等离激元聚焦性质. 我们发现, 除了入射激光偏振态、螺旋结构手性之外, 结构螺距与表面等离激元波长的比值也可以用来控制结构表面电场分布, 进而在结构中心形成0阶、1阶乃至更高阶符合隐失贝塞尔函数的涡旋电场. 通过相位分析, 我们对涡旋电场的成因进行了解释. 并利用有限时域差分的模拟方法计算了不同螺距时, 结构中形成的电场及相应空间相位分布. 最后利用扫描近场光学显微镜, 观测结构中不同的光场分布, 在结构中心得到了亚波长的聚焦光斑及符合不同阶贝塞尔函数的涡旋形表面等离激元聚焦环.  相似文献   

5.
表面等离激元自诞生以来已有一百多年的历史,并逐渐形成了一门新的学科——表面等离激元光子学.位于金属纳米结构中的局域表面等离激元可产生非常显著的近表面电场增强,并成功应用于诸多研究领域当中,而对局域表面等离激元与外界入射光中磁场的相互作用的研究则相对较少.该研究在前期已有的研究基础之上模拟计算了金属纳米球-纳米圆盘结构间...  相似文献   

6.
Using the method of the tensor Green’s function of the wave equation, the differential and total cross sections for the scattering of surface optical electromagnetic waves (surface plasmon polaritons) by a spherical nanoparticle into surface plasmon polaritons and light have been obtained with the inclusion of the magnetic dipole contribution. Using the example of noble metal systems, it has been shown that the magnetic dipole contribution may significantly affect the angular dependence of the differential cross sections and increase their anisotropy as the plasmon wavelength increases.  相似文献   

7.
We investigate the optical absorption spectrum of a periodic array of silver nanoparticle dimer on a thin silver film using multiple-scattering formalism. Surface plasmon polariton mediated from silver nanoparticle dimer array is excited and enhanced by about four times compared with that from monomer array. This enhancement results from the coupling between the two nanoparticles’ plasmons of symmetry mode and anti-symmetry mode. We also illustrate the distance-dependent nanoparticle plasmonic coupling modes based on the polarized charge distribution in dimer geometry. The proposed silver nanoparticle dimer array can be used to enhance surface spectroscopy.  相似文献   

8.
On films and fibers of well-reflecting metals (silver, gold) several nanometers thick, surface plasmons could be slowed down by 10 to 40 times. The plasmons are additionally slowed down when the nanofilms (nanofibers) are placed into a medium with a dielectric constant that is approximately equal to but still smaller than the modulus of the negative dielectric constant of the metal. As the result, the optical frequency waves prove to have wavelengths of ∼4 nm, i.e., as in soft x-ray. The propagation losses of these waves are moderately high. We propose to develop the optics (the optical transformations — deviation, focusing, photonic crystals, etc.) of these waves on thin metal layers integrated into nanodevices. In particular, we calculated the probability of spontaneous emission of a photon by an atom (molecule) into the surface plasmon of a nanoparticle. This probability proved to be increased by many orders of magnitude. This work interprets experiments that show a higher (14 orders of magnitude and more) probability of spontaneous Raman scattering of a molecule on the surface of a silver nanoparticle. The molecule is in the field of a surface plasmon, owing to which the local field and density of states of the field prove to be increased to such an extent as to give a rise of 12 or 13 orders of magnitude. An additional increase by one or two orders of magnitude is due to the antenna effect of a pair of nanoparticles, one of which is extremely small and the other is sufficiently large to serve as an efficient transceiver antenna. The possibility of developing sources of light pulses of exceptionally short duration arises.  相似文献   

9.
Light transmission through perforated metal film has been reported and some investigations have been made into the physical origin of this phenomenon. We show that the transmission assisted with surface plasmon (SP) through a perforated metal film results from two different SP resonances effects: surface plasmon resonance due to the periodicity at the left air/metal and right metal/air interfaces and localized cavities resonance inside rectangular holes. The fields intensity is localized separately on the left and right metal-air surfaces for structure-factor-induced surface plasmon mode. And for localized cavities resonance mode, standing electromagnetic fields can also be entirely localized inside the nanohole region. The aspect ratio of the rectangular holes can affect the transmission.  相似文献   

10.
Superenhanced light transmission through subwavelength rectangular hole arrays have been reported and some investigations have been made into the physical origin of this phenomenon [K.J. Klein Koerkamp et al., Phys. Rev. Lett. 92, 183901 (2004)]. In our current work, by performing FDTD (finite difference in the time domain) numerical simulations, we demonstrate that mechanism that is different from surface plasmon polaritons set up by the periodicity at the in-plane metal surfaces may account for this superenhanced light transmission. We suggest that for arrays of rectangular holes with small enough width in comparison to the wavelength of the incident light, standing electromagnetic fields can be set up inside the cavity by the surface plasmons on the hole walls with its intensity being substantially enhanced inside the cavity. So resonant cavity-enhanced light transmission is predominant and responsible for its superenhanced light transmission. Rectangular holes behave as Fabry-Pérot resonance cavities except that the frequency of their fundamental modes is restricted by their TM cutoff frequency. However we believe that both localized surface plasmon modes and surface plasmon polaritons set up by the periodicity at the in-plane metal surfaces have their shares in extraordinary optical transmission of rectangular hole arrays especially when the width of the rectangular hole is not small enough and the metal film is not thick enough.  相似文献   

11.
We calculate the reflected second harmonic light from alkali metal films with the simultaneous excitation of the surface plasmon mode. The harmonic generation from a sodium film at the ruby laser frequency increases by over two orders of magnitude at the angle for surface plasmon excitation. The harmonic enhancement is closely related to the surface plasmon density and exhibits a strong dependence on the angle of incidence, film thickness, and the linear optical constants of the metal film.  相似文献   

12.
The problem of extreme focusing of an optical beam into the spatial region with wavelength dimensions is considered with the use of the special features of radiation interaction with isolated spherical particles. Results of numerical computations of the optical field intensity at the surface of silver particles of different radii upon exposure to laser radiation with different wavelengths are presented. It is demonstrated that the relative intensity of the plasmon optical field on the nanoparticle surface increases and the field focusing region decreases with increasing particle radius. Results of numerical computations illustrating the influence of the shell of composite nanoparticles comprising a dielectric core and a metal shell on the optical field intensity in the vicinity of the particle are presented. The problem of local optical foci of a transparent microparticle (photonic nanojets) is investigated. It is established that variation of the micron particle size, its optical properties, and laser radiation parameters allows the amplitude and spatial characteristics of the photonic nanojet region to be controlled efficiently.  相似文献   

13.
周静  王鸣  倪海彬  马鑫 《物理学报》2015,64(22):227301-227301
设计了一种六角密排的二维环形纳米腔阵列结构, 利用时域有限差分算法对该结构的光学特性进行了探究. 仿真结果表明, 在线性偏振光入射时, 环形腔内可以形成多重圆柱形表面等离激元谐振, 谐振波长的个数和大小与环形腔的结构参数相关. 根据透、反射光谱, 电场矢量的模式分布及截面电荷密度的分布, 谐振波长处形成圆柱形表面等离激元, 谐振波长处入射光能量大部分在环形腔内损耗, 此时反射率为极小值, 环形腔内的电场增强效应为极大值(光强增强可达1065倍). 谐振波长与环形腔的结构参数(狭缝内径、狭缝外径、膜厚、环境介质折射率、金属的材质)相关, 通过调节结构参数, 谐振波长在350–2000 nm范围内可调. 通过对比相同结构参数的单个环形腔和环形腔阵列的仿真结果, 周期排布对环形腔内的圆柱形表面等离激元吸收峰位置影响不明显. 该结构反射光谱对入射光电矢量偏振方向不敏感. 谐振波长的可调控性对于表面拉曼增强和表面等离激元共振传感器的设计与优化具有指导性意义, 且应用于折射率传感器时灵敏度可达1850 nm/RIU.  相似文献   

14.
We report FDTD simulation results demonstrating that the optical phase change of surface plasmon polariton-assisted transmission through nanohole arrays in a metal film undergoes a sharp change under resonant conditions. The phenomenon can be explained by various resonant modes between the nanoholes. We further explore the possibility of using this effect for phase-sensitive surface plasmon resonance biosensing applications.  相似文献   

15.
We numerically investigate the surface plasmon resonance (SPR) mode patterns in periodic silver-shell nanopearl arrays and its dimer arrays with the core relative permittivities filled inside the dielectric holes (DHs) by means of finite element method with three-dimensional calculations. Numerical results of resonant wavelengths corresponding to the effects of different period of unit cells, radii of DHs, illumination wavelengths, field propagation, electrical field stream lines, charge distributions, charge densities, half- body charge densities, and the DH core relative permittivities of periodic silver-shell nanopearls are also reported. It can be seen that the periodic silver-shell nanopearl arrays and its dimer arrays with DHs exhibit tunable SPR modes corresponding to the bonding and anti-bonding modes, respectively, that are not observed for the solid silver cases with the same volume. These results are crucial in designing localized SPR sensors and other optical devices based on periodic metal nanoparticle array structures.  相似文献   

16.
表面增强拉曼光谱技术对分子具有特异性识别以及快速无损检测的能力,使其在药物检测方面具有重大的潜力。通过贵金属和氮化钛之间协同作用,使复合基底具有较高的SERS性能,提供了一种基于SERS技术的药物检测方法。采用电化学沉积及自组装法,制备出贵金属/氮化钛复合薄膜。研究表明,在复合薄膜中存在面心立方晶型TiN、金属单质Au和Ag三种物相;电子显微镜显示平均粒径分别为90和50 nm的金属Au和Ag颗粒均匀分布在TiN薄膜表面;基底的紫外-可见吸收图谱中出现了贵金属金与银纳米颗粒及TiN薄膜三者的特征等离子体共振吸收峰。以该复合薄膜为SERS基底,对烟酸溶液进行拉曼检测。结果显示,贵金属/氮化钛复合薄膜对烟酸具有显著的SERS效应,最低检测浓度为10-5 mol·L-1,对1 033 cm-1处烟酸拉曼信号强度及浓度取对数,发现两者间呈一定线性关系,其R2为0.969,得益于TiN,Au和Ag之间可发生表面等离子体共振引起电磁场增强,以及电荷转移效应。研究还发现,烟酸通过COO-基团垂直吸附在贵金属/氮化钛基底表面;在酸性环境下,烟酸N原子质子化主要以阳离子N+H(Ⅰ)形式存在;在碱性环境时,主要以阴离子COO-(Ⅲ)形式存在。绞股蓝总甙溶液中模拟烟酸非法添加,该复合基底对其最低的拉曼检测浓度是10-5 mol·L-1,为现场快速检测非法添加药物提供了新途径。  相似文献   

17.
We present an overview of the optical properties of nonlinear surface plasmon polaritonic crystals and their applications to control light with light. Surface plasmon polaritonic crystals are periodically nanostructured metal surfaces or thin metal films that act as two‐dimensional photonic crystals for surface polaritons. Hybritization of such nanostructures with dielectrics exhibiting an optical nonlinear response allows utilization of the electromagnetic field enhancement effects to observe nonlinear effects and bistable behaviour at low light intensities. By changing the geometry of the nanostructured film, the dispersion of the crystal is modified and, thus, electromagnetic mode structure and associated density of states can be controllably tuned in the desired spectral range. This provides enhanced flexibility in engineering the nonlinear optical response of plasmonic crystals in a chosen spectral range for both control and signal wavelengths.  相似文献   

18.
Evanescently coupled resonance in surface plasmon enhanced transmission   总被引:5,自引:0,他引:5  
The optical transmission through subwavelength holes in metal films can be enhanced by several orders of magnitude by enabling interaction of the incident light with independent surface plasmon (SP) modes on either side of the film. Here, we show that this transmission is boosted by an additional factor of 10 when the energies of the SP modes on both sides are matched. These results, confirmed by a three-dimensional theoretical analysis, give a totally new understanding of the phenomenon of SP enhanced transmission. It is found that the holes behave like subwavelength cavities for the evanescent waves coupling the SPs on either side of the film. In this unusual device, the reflection at either end of the cavity is provided by the SP modes which act as frequency dependent mirrors.  相似文献   

19.
The optical transmission of an individual subwavelength aperture in a multilayered metal film is shown to be enhanced compared with that of a homogeneous metal film. The enhancement effect is due to the light coupling to surface plasmon excitation facilitated by a film periodicity. The sensitivity of the transmission to the dielectric filling of the aperture is also shown. The latter effect can be used to switch and control the transmittance. Devices based on enhanced transmission through nanosized apertures can find applications in high-density optical and magneto-optical data storage, high-resolution microscopy, and photolithography, where nanoscale light sources with high-optical-power throughput are required, as well as in sensor applications.  相似文献   

20.
为了提高长波量子阱红外探测器的灵敏度及探测率,采用表面等离激元效应来提高量子阱红外探测器中二维光栅的耦合效率。利用三维时域有限差分算法,分析表面等离激元作用下,长波量子阱红外探测器中二维金属薄膜光栅参数对入射光的调制作用。计算结果表明,对于8 m的入射光,当光栅周期P=2.8 m,孔直径D=1.4 m,光栅层厚度L=0.04 m时,X Y平面内Z方向电场值最大,光栅的耦合效率最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号