首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
叶成芝  张蓝云  薛海斌 《中国物理 B》2022,31(2):27304-027304
In the ring-shaped Su–Schrieffer–Heeger(SSH)double-chain,the quantum interference between the two different electron tunneling paths of the upper and lower chains has an important influence on the electron transport properties of non-trivial topological edge states.Here,we have studied the electron transport signatures of non-trivial topological edge states in a ring-shaped SSH double-chain system based on the wave-guide theory and transfer-matrix method.In the ringshaped SSH double-chain with the upper chain being different from the lower one,it is demonstrated that the electron transmission probability displays the four and two resonance peaks associated with the non-trivial topological edge states in the weak and strong coupling regimes,respectively.Whereas in the case of the upper chain being the same as the lower one,the two transmission resonance peaks associated with the non-trivial topological edge states in the weak coupling regime are only found,and that in the strong coupling regime disappear that originated from the destructive interference between the two different electron tunneling paths of the upper and lower chains.Consequently,the variation of the number of transmission resonance peaks associated with the non-trivial topological edge states in the weak and strong coupling regimes suggests that an alternative scheme for detecting non-trivial topological edge states in the ring-shaped SSH doublechain system.  相似文献   

2.
在Su-Schrieffer-Heeger (SSH)原子链中,电子在胞内和胞间的跳跃依赖于其自旋时,即SSH原子链存在自旋轨道耦合作用时,存在不同缠绕数的非平庸拓扑边缘态.如何探测自旋轨道耦合SSH原子链不同缠绕数的边缘态是一个重要问题.本文在紧束缚近似下研究了自旋轨道耦合SSH原子链的非平庸拓扑边缘态性质及其零能附近的电子输运特性.研究发现四重和二重简并边缘态的缠绕数分别为2和1;并且仅当源极入射电子的自旋被极化(铁磁电极)时,自旋轨道耦合SSH原子链在零能附近的电子输运特性才能反映其边缘态的能谱特性.尤其是,随着自旋轨道耦合SSH原子链与左、右导线之间的耦合强度由弱到强改变,对于缠绕数为2的四重简并边缘态,入射电子在零能附近的透射峰数目将从4个变为0;而对于缠绕数为1的二重简并边缘态情形,其透射峰数目将从2个变为0.因此,在源极为铁磁电极的情形下,通过观察自旋轨道耦合SSH原子链在零能附近电子共振透射峰的数目随着其与左、右导线之间耦合强度的变化,来探测其不同缠绕数的边缘态.上述结果为基于电子输运特性探测自旋轨道耦合SSH原子链不同拓扑性质的边缘态提供了一种可选择的理论方案.  相似文献   

3.
In the usual Su–Schrieffer–Heeger (SSH) chain, the topology of the energy spectrum is divided into two categories in different parameter regions. Here, the topological and nontopological edge states induced by qubit-assisted coupling potentials in circuit quantum electrodynamics (QED) lattice modeled as a SSH chain are studied. It is found that, when the coupling potential added on only one end of the system raises to a certain extent, the strong coupling potential will induce a new topologically nontrivial phase accompanied by the appearance of a nontopological edge state, and the novel phase transition leads to the inversion of odd–even effect directly. Furthermore, the topological phase transitions when two unbalanced coupling potentials are injected into both ends of the circuit QED lattice are studied, and it is found that the system exhibits three distinguishing phases with multiple flips of energy bands. These phases are significantly different from the previous phase induced via unilateral coupling potential due to the existence of a pair of nontopological edge states. The scheme provides a feasible and visible method to induce different topological and nontopological edge states through controlling the qubit-assisted coupling potentials in circuit QED lattice both in experiment and theory.  相似文献   

4.
C. Yuce 《Physics letters. A》2019,383(2-3):248-251
We predict pseudo topological insulators that have been previously overlooked. We determine some conditions under which robust pseudo topological edge states appear and illustrate our idea on the Su–Schrieffer–Heeger (SSH) model with extra chiral symmetry breaking potentials. We discuss that pseudo topological insulating phase transition occurs without band gap closing.  相似文献   

5.
The topological phase transitions among normal insulator phase, two kinds of topological insulator phases, and topological semimetal phase are shown based on the non-Hermitian dimerized Su–Schrieffer–Heeger (SSH) model with the nonreciprocal intercell and long-range hopping. In contrast to the previous work, it is found that the topological insulator phase in the present SSH model can hold the larger non-Bloch winding number accompanied by exceptional winding of the generalized Brillouin zone around the gap-closing points. Compared with the usual topological insulator phase in non-Hermitian SSH model, the topological insulator with the larger winding number owns two pairs of zero energy modes with a distinct form of edge localization in the gap. The physical mechanism of the distinct edge localization for zero energy modes via a equivalent Hermitian version of the non-Hermitian SSH model is revealed. Additionally, the process of the phase transition is visualized among normal insulator phase, topological insulator phases, and topological semimetal phase in detail via the evolution of the gap-closing points on the plane of generalized Brillouin zone. This work further verifies the non-Bloch theory and enrich the investigation about the topologically nontrivial phase with the larger topological invariant in the non-Hermitian SSH model.  相似文献   

6.
Zhi-Xu Zhang 《中国物理 B》2022,31(7):70301-070301
We investigate the topological phase transition and the enhanced topological effect in a cavity optomechanical system with periodical modulation. By calculating the steady-state equations of the system, the steady-state conditions of cavity fields and the restricted conditions of effective optomechanical couplings are demonstrated. It is found that the cavity optomechanical system can be modulated to different topological Su-Schrieffer-Heeger (SSH) phases via designing the optomechanical couplings legitimately. Meanwhile, combining the effective optomechanical couplings and the probability distributions of gap states, we reveal the topological phase transition between trivial SSH phase and nontrivial SSH phase via adjusting the decay rates of cavity fields. Moreover, we find that the enhanced topological effect of gap states can be achieved by enlarging the size of system and adjusting the decay rates of cavity fields.  相似文献   

7.
Z. Oztas  N. Candemir 《Physics letters. A》2019,383(15):1821-1824
We consider Su-Schrieffer-Heeger (SSH) model in the presence of an imaginary gauge field. This model is non-Hermitian and has chiral symmetry. We investigate the influence of non-Hermiticity parameter on topologically trivial and nontrivial phases. We find topological edge states with real energy spectrum and obtain the topological invariant of the system.  相似文献   

8.
Stimulated adiabatic passage has been extensively studied to achieve robust and selective population transfer in quantum systems. Recently, the quantum-classic analogy has been rapidly developing and can be considered responsible for the implementation of the adiabatic transfer of sound energy in cavity chain systems. In this article, we investigate the adiabatic transfer of sound energy between two topological end states in the Su-Schrieffer-Heeger(SSH) cavity chain, which can be considered to be the acoustic analog of the quantum chirped-pulse excitation. The topological adiabatic passage in SSH cavity chain has two categories. When the single-cavity resonance frequencies on the sublattices A and B in the SSH cavity chain do not switch their spectrum positions, the topologically protected adiabatic evolution results in the returning passage of the sound excited in one end cavity. When a level crossing with single-cavity resonance frequencies on the sublattices A and B exhibits switch in the frequency spectrum, acoustic energy is observed to be topologically pumped between the two end cavities of the SSH chain.  相似文献   

9.
张卫锋  李春艳  陈险峰  黄长明  叶芳伟 《物理学报》2017,66(22):220201-220201
Su-Schreiffer-Heeger模型预测了在一维周期晶格的边缘处可能出现零维的拓扑零能模,其能量本征值总是出现在能隙的正中间.本文以半导体微腔阵列中光子和激子在强耦合情况下形成的准粒子为例,通过准粒子的自旋轨道耦合与Zeeman效应,研究了时间反演对称性破缺对拓扑零能模的影响.发现拓扑零能模的能量本征值可以随着自旋轨道耦合强度的变化在整个带隙内移动,自旋相反的模式移动方向相反;在二维微腔阵列中发现了沿着晶格边缘移动的拓扑零能模,提出了一维零能模的概念.由于时间反演对称性的破缺,这种一维拓扑零能模解除了在相反传输方向上的能级的简并,从而在传输过程中出现极强的绕过障碍物的能力.  相似文献   

10.
We propose a scheme to investigate the topological phase transition and the topological state transfer based on the small optomechanical lattice under the realistic parameters regime.We find that the optomechanical lattice can be equivalent to a topologically nontrivial Su-Schrieffer Heeger(SSH)model via designing the effective optomechanical coupling.Especially,the optomechanical lattice experiences the phase transition between topologically nontrivial SSH phase and topologically trivial SSH phase by controlling the decay of the cavity field and the opto mechanical coupling.We stress that the to pological phase transition is mainly induced by the decay of the cavity field,which is counter-intuitive since the dissipation is usually detrimental to the system.Also,we investigate the photonic state transfer between the two cavity fields via the topologically protected edge channel based on the small optomechanical lattice.We find that the quantum st ate transfer assisted by the topological zero energy mode can be achieved via implying the external lasers with the periodical driving amplitudes into the cavity fields.Our scheme provides the fundamental and the insightful explanations towards the mapping of the photonic topological insulator based on the micro-nano optomechanical quantum optical platform.  相似文献   

11.
《Physics letters. A》2020,384(32):126828
We simulate various topological phenomena in condense matter, such as formation of different topological phases, boundary and edge states, through two types of quantum walk with step-dependent coins. Particularly, we show that one-dimensional quantum walk with step-dependent coin simulates all types of topological phases in BDI family, as well as all types of boundary and edge states. In addition, we show that step-dependent coins provide the number of steps as a controlling factor over the simulations. In fact, with tuning number of steps, we can determine the occurrences of boundary, edge states and topological phases, their types and where they should be located. These two features make quantum walks versatile and highly controllable simulators of topological phases, boundary, edge states, and topological phase transitions. We also report on emergences of cell-like structures for simulated topological phenomena. Each cell contains all types of boundary (edge) states and topological phases of BDI family.  相似文献   

12.
13.
《Physics letters. A》2020,384(22):126429
Most topological phase transitions are accompanied by the emergence of surface/edge states with spin dependence. Usually, the quantized Hall conductivity cannot characterize the anisotropic transports and spin dependence of topological states. Here, we study the intricate topological phase transition and the anisotropic behavior of edge states in silicene nanoribbon submitted to an electric field or/and a light irradiation. It is interesting to find that a circularly polarized light can induce a type-II quantum anomaly Hall phase, which is manifested as the high Chern number and the strong anisotropic edge states. Besides the measurement of the quantized Hall conductivity, we further propose to probe these topological phase transitions and the anisotropy of edge states by measuring the current-induced nonequilibrium spin polarization. It is found that the spin polarization exhibits more signatures about the behavior of surface/edge states, beyond the quantized Hall conductivity, especially for spin-dependent transports with different velocities.  相似文献   

14.
In this Letter, we propose a unique bilayer design of phononic crystal slabs that are constructed by two layers of snowflake phononic crystal plates connected by a honeycomb array of cylinders. By tuning orientations of snowflake-shaped holes in both layers, we achieve two kinds of valley-projected topological elastic insulators distinguished by conventional and layer-polarized topological valley Hall phases. Then, between different conventional and layer-polarized topological valley Hall phases, two kinds of edge modes, layer-mixed and layer-polarized edge modes, are obtained and explored. In finite-size samples, the interesting topological transport properties, which the elastic wave can propagate alternatively between both layers and only in a single layer, are realized by exciting layer-mixed and layer-polarized edge states. In addition, we design an interlayer converter to realize conversion of the elastic wave propagation between both layers. Our research promotes the development of topological elastic insulators and provides a route for various practical applications.  相似文献   

15.
许楠  张岩 《物理学报》2019,68(10):104206-104206
近年来,探索新的拓扑量子结构、深入分析各种多聚化拓扑晶格中的新奇物理性质已经成为热点.并且,多聚化拓扑模型在量子光学等领域的研究也愈发深入,拥有广阔的发展前景.本文聚焦于研究三聚化非厄密晶格中的新奇拓扑特性.首先,若晶胞内最近邻正反向耦合不相等,三聚化模型中的体态和边缘态出现趋肤效应.其中,随着最近邻耦合正反系数差的增大,拓扑保护的边缘态的宽度和简并度均可被调制,边缘态数量也会减少.其次,当在考虑次近邻耦合的影响时,随着次近邻耦合系数在适当范围内变化,系统本征能谱的上下能隙及其中具有趋肤效应的边缘态也会发生不对称的变化.此外,当适当改变两种耦合系数,三聚化非厄密模型的体态和边缘态的局域程度也会随之发生变化.  相似文献   

16.
The Su–Schrieffer–Heeger (SSH) model has been the subject of extensive experimental research in the context of topological photonics. Ideally, the on‐site potential and hopping strength are sufficiently accurate for implementation in photonic coupled waveguide arrays. Here, two localized edge modes, the topological zero mode and trivial Tamm mode, are proposed and demonstrated in the modified SSH model using a microwave photonic waveguide array. The system used is composed of an array of evanescently coupled ultrathin corrugated metallic “H‐bar” waveguides. Furthermore, the differences between the zero mode and Tamm mode are clearly demonstrated by microwave near‐field experiments on the coupling behavior along the propagation direction for 40 cm at the excitation frequency of 17 GHz. These findings should deepen the understanding of localized edge mode confinement mechanisms, both in coupled waveguide array systems and other topological or quantum systems.  相似文献   

17.
Topological edge solitons represent a significant research topic in the nonlinear topological photonics. They maintain their profiles during propagation, due to the joint action of lattice potential and nonlinearity, and at the same time are immune to defects or disorders, thanks to the topological protection. In the past few years topological edge solitons were reported in systems composed of helical waveguide arrays, in which the time-reversal symmetry is effectively broken. Very recently, topological valley Hall edge solitons have been demonstrated in straight waveguide arrays with the time-reversal symmetry preserved. However, these were scalar solitary structures. Here, for the first time, we report vector valley Hall edge solitons in straight waveguide arrays arranged according to the photonic lattice with innate type-II Dirac cones, which is different from the traditional photonic lattices with type-I Dirac cones such as honeycomb lattice. This comes about because the valley Hall edge state can possess both negative and positive dispersions, which allows the mixing of two different edge states into a vector soliton. Our results not only provide a novel avenue for manipulating topological edge states in the nonlinear regime, but also enlighten relevant research based on the lattices with type-II Dirac cones.  相似文献   

18.
Topological insulators are emergent states of quantum matter that are gapped in the bulk with timereversal symmetry-preserved gapless edge/surface states, adiabatically distinct from conventional materials. By proximity to various magnets and superconductors, topological insulators show novel physics at the interfaces, which give rise to two new areas named topological spintronics and topological quantum computation. Effects in the former such as the spin torques, spin-charge conversion, topological antiferromagnetic spintronics, and skyrmions realized in topological systems will be addressed. In the latter, a superconducting pairing gap leads to a state that supports Majorana fermions states, which may provide a new path for realizing topological quantum computation. Various signatures of Majorana zero modes/edge mode in topological superconductors will be discussed. The review ends by outlooks and potential applications of topological insulators. Topological superconductors that are fabricated using topological insulators with superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.  相似文献   

19.
何敬  寇谡鹏 《中国物理 B》2016,25(11):117310-117310
Topological insulators/superconductors are new states of quantum matter with metallic edge/surface states.In this paper,we review the defects effect in these topological states and study new types of topological matters — topological hierarchy matters.We find that both topological defects(quantized vortices) and non topological defects(vacancies) can induce topological mid-gap states in the topological hierarchy matters after considering the superlattice of defects.These topological mid-gap states have nontrivial topological properties,including the nonzero Chern number and the gapless edge states.Effective tight-binding models are obtained to describe the topological mid-gap states in the topological hierarchy matters.  相似文献   

20.
The Su−Schrieffer−Heeger (SSH) model, commonly used for robust state transfers through topologically protected edge pumping, has been generalized and exploited to engineer diverse functional quantum devices. Here, we propose to realize a fast topological beam splitter based on a generalized SSH model by accelerating the quantum state transfer (QST) process essentially limited by adiabatic requirements. The scheme involves delicate orchestration of the instantaneous energy spectrum through exponential modulation of nearest neighbor coupling strengths and onsite energies, yielding a significantly accelerated beam splitting process. Due to properties of topological pumping and accelerated QST, the beam splitter exhibits strong robustness against parameter disorders and losses of system. In addition, the model demonstrates good scalability and can be extended to two-dimensional crossed-chain structures to realize a topological router with variable numbers of output ports. Our work provides practical prospects for fast and robust topological QST in feasible quantum devices in large-scale quantum information processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号