首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Ling Xu 《中国物理 B》2021,30(11):118702-118702
We propose a terahertz hybrid metamaterial composed of subwavelength metallic slits and graphene plasmonic ribbons for sensing application. This special design can cause the interaction between the plasmon resonances of the metallic slits and graphene ribbons, giving rise to a strong coupling effect and Rabi splitting. Intricate balancing in the strong coupling region can be perturbed by the carrier concentration of graphene, which is subject to the analyte on its surface. Thereby, the detection of analyte can be reflected as a frequency shift of resonance in terahertz transmission spectra. The result shows that this sensor can achieve a theoretical detection limit of 325 electrons or holes per square micrometer. Meanwhile, it also works well as a refractive index sensor with the frequency sensitivity of 485 GHz/RIU. Our results may contribute to design of ultra-micro terahertz sensors.  相似文献   

2.
本文对可调太赫兹与光学超材料的研究进展进行了综述,并对其发展趋势和应用前景进行了展望。可以预见,可调超材料将继续成为超材料研究中的热点课题,并将成为引领光学器件和光学系统变革的潜在技术途径,对光学和太赫兹技术的发展将产生深远的影响。  相似文献   

3.
Yuting Zhang 《中国物理 B》2022,31(6):68702-068702
We numerically demonstrate a photo-excited plasmon-induced transparency (PIT) effect in hybrid terahertz (THz) metamaterials. The proposed metamaterials are regular arrays of hybrid unit cells composed of a metallic cut wire and four metallic split-ring resonators (SRRs) whose gaps are filled with photosensitive semiconductor gallium arsenide (GaAs) patches. We simulate the PIT effect controlled by external infrared light intensity to change the conductivity of GaAs. In the absence of photo excitation, the conductivity of GaAs is 0, thus the SRR gaps are disconnected, and the PIT effect is not observed since the dark resonator (supported by the hybrid SRRs) cannot be stimulated. When the conductivity of GaAs is increased via photo excitation, the conductivity of GaAs can increase rapidly from 0 S/m to 1×106 S/m and GaAs can connect the metal aluminum SRR gaps, and the dark resonator is excited through coupling with the bright resonator (supported by the cut wire), which leads to the PIT effect. Therefore, the PIT effect can be dynamically tuned between the on and off states by controlling the intensity of the external infrared light. We also discuss couplings between one bright mode (CW) and several dark modes (SRRs) with different sizes. The interference analytically described by the coupled Lorentz oscillator model elucidates the coupling mechanism between one bright mode and two dark modes. The phenomenon can be considered the result of linear superposition of the coupling between the bright mode and each dark mode. The proposed metamaterials are promising for application in the fields of THz communications, optical storage, optical display, and imaging.  相似文献   

4.
Haotian Du 《中国物理 B》2022,31(6):64210-064210
A switchable terahertz (THz) polarization converter based on vanadium dioxide (VO2) metamaterial is proposed. It is a 5-layer structure which containing metal split-ring-resonator (SRR), the first polyimide (PI) spacer, VO2 film, the second PI spacer, and metal grating. It is an array structure and the period in x and y directions is 100 μm. The performance is simulated by using finite integration technology. The simulation results show that, when the VO2 is in insulating state, the device is a transmission polarization converter. The cross-linear polarization conversion can be realized in a broadband of 0.70 THz, and the polarization conversion rate (PCR) is higher than 99%. Under thermal stimulus, the VO2 changes from insulating state to metallic state, and the device is a reflective polarization converter. The linear-to-circular polarization conversion can be successfully realized in a broadband of 0.50 THz, and the PCR is higher than 88%.  相似文献   

5.
邹涛波  胡放荣  肖靖  张隆辉  刘芳  陈涛  牛军浩  熊显名 《物理学报》2014,63(17):178103-178103
本文设计了一种基于超材料的偏振不敏感太赫兹宽带吸波体.吸波体包含两层金属和一层中间介质,表面金属层每一个周期单元由五种尺寸接近的金属块按照相邻不同的规律排列成5×5的方形阵列.各种尺寸金属块分别产生单峰谐振吸收,五个谐振吸收峰相互靠近从而产生宽带吸收.通过研究吸波体表面电流和电场z分量分布情况可知,入射太赫兹能量的吸收主要是由y方向上电场引起的电偶极子振荡和z方向上磁场引起的磁极化产生,而且金属层的欧姆损耗起主要作用.仿真结果表明,吸波体吸收率在80%以上的带宽约为1.2 THz,最高吸收率可达98.7%,半峰全宽(FWHM)为1.6 THz,该宽带吸波体的厚度约为中心波长的二十分之一,对偏振方向不敏感,且能实现大角度吸收,在太赫兹频段的电磁隐身、测辐射热探测器以及宽带通信等领域有潜在的应用价值.  相似文献   

6.
The two‐dimensional layered semiconducting di‐chalcogenides are emerging as promising candidates for post‐Si‐CMOS applications owing to their excellent electrostatic integrity and the presence of a finite energy bandgap, unlike graphene. However, in order to unravel the ultimate potential of these materials, one needs to investigate different aspects of carrier transport. In this Letter, we present the first comprehensive experimental study on the dependence of carrier mobility on the layer thickness of back‐gated multilayer MoS2 field‐effect transistors. We observe a non‐monotonic trend in the extracted effective field‐effect mobility with layer thickness which is of relevance for the design of high‐performance devices. We also discuss a detailed theoretical model based on Thomas–Fermi charge screening and interlayer coupling in order to explain our experimental observations. Our model is generic and, therefore, is believed to be applicable to any two‐dimensional layered system.

  相似文献   


7.
Bilayer (BL) molybdenum disulfide (MoS2) is one of the most important electronic structures not only in valleytronics but also in realizing twistronic systems on the basis of the topological mosaics in moiré superlattices. In this work, BL MoS2 on sapphire substrate with 2H-stacking structure is fabricated. We apply the terahertz (THz) time-domain spectroscopy (TDS) for examining the basic optoelectronic properties of this kind of BL MoS2. The optical conductivity of BL MoS2 is obtained in temperature regime from 80 K to 280 K. Through fitting the experimental data with the theoretical formula, the key sample parameters of BL MoS2 can be determined, such as the electron density, the electronic relaxation time and the electronic localization factor. The temperature dependence of these parameters is examined and analyzed. We find that, similar to monolayer (ML) MoS2, BL MoS2 with 2H-stacking can respond strongly to THz radiation field and show semiconductor-like optoelectronic features. The theoretical calculations using density functional theory (DFT) can help us to further understand why the THz optoelectronic properties of BL MoS2 differ from those observed for ML MoS2. The results obtained from this study indicate that the THz TDS can be applied suitably to study the optoelectronic properties of BL MoS2 based twistronic systems for novel applications as optical and optoelectronic materials and devices.  相似文献   

8.
Shuai Sun 《中国物理 B》2021,30(12):124205-124205
Based on the index-induced mode coupling between the higher-order mode in core and the fundamental mode in cladding tubes, the single-mode operation can be realized in any antiresonant fibers (ARFs) when satisfying that the area ratio of cladding tube and core is about 0.46:1, and this area ratio also should be modified according to the shape and the number of cladding tubes. In the ARF with nodal core boundary, the mode in core also can couple with the mode in the wall of core boundary, which can further enhance the suppression of high-order mode. Accordingly, an ARF with conjoint semi-elliptical cladding tubes realizes a loss of higher-order mode larger than 30 dB/m; simultaneously, a loss of fundamental mode loss less than 0.4 dB/m.  相似文献   

9.
基于VO2薄膜相变原理的温控太赫兹超材料调制器   总被引:1,自引:0,他引:1       下载免费PDF全文
刘志强  常胜江  王晓雷  范飞  李伟 《物理学报》2013,62(13):130702-130702
利用二氧化钒薄膜绝缘相–金属相的相变特性, 提出了一种基于超材料的温控太赫兹调制器, 研究了相变超材料在太赫兹波段的传输特性和温控可调谐特性. 当入射太赫兹波为水平偏振或垂直偏振状态时, 器件的透过率谱线在1 THz附近呈现出两个独立的、中心频率分别为1.3 THz和1.7 THz、 带宽分别为0.2 THz和0.35 THz的 透射宽带. 当温度从40℃至80℃变化时, 两宽带的透过率发生明显的降低, 在二氧化钒的相变温度(68℃)时尤其灵敏, 对入射光的二种偏振状态, 调制深度均达到60%以上, 实现了良好的调制效果. 关键词: 太赫兹超材料 2薄膜')" href="#">VO2薄膜 调制器 相变  相似文献   

10.
Transition metal dichalcogenides are rising candidates for the replacement of Pt catalysts in water splitting. In this theoretical study we focus on the hydrogen evolution reaction part of this process and on how hydrogen (H) interacts with MoS2 nanostructures, free‐standing or positioned on a graphene substrate. Density functional theory calculations confirm the stability of such nanostructures and our results for H on several configurations, from 2D infinite monolayers to quasi‐1D MoS2 ribbons and quasi‐0D MoS2 flakes, are presented. We calculate the adsorption energy of H atoms on various sites of the MoS2 nanostructures, notably at Mo and S active edges. Comparing free‐standing and MoS2/graphene hybrid systems we find that the effect of the support on the adsorption of H on MoS2 nanostructures is quite significant when the substrate induces strain. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

11.
以芥子气和沙林为代表的毒剂具有毒性强、扩散快的特点,是一类杀伤力强、难以防护的化学战剂,对其快速高效检测是一项具有挑战性的课题.本文基于第一性原理计算方法研究了V掺杂对二维MoS_2气敏性能影响的机理,发现V原子向二维MoS_2的掺杂过程为自发的放热反应, V原子可以稳定掺杂于二维MoS_2超胞结构中的S空位上.掺杂进入二维MoS_2体系的V原子作为施主中心向周围Mo原子给出电子,从而提高了材料的导电能力.吸附能、吸附距离和吸附过程中的电子转移计算结果表明V的掺杂提高了二维MoS_2对气体分子的吸附能力,增强了吸附质分子与基底表面的电子相互作用,从而提高了二维MoS_2的气敏性能.  相似文献   

12.
Siwen You 《中国物理 B》2023,32(1):17901-017901
Hybrid organic-inorganic perovskite thin films have attracted much attention in optoelectronic and information fields because of their intriguing properties. Due to quantum confinement effects, ultrathin films in nm scale usually show special properties. Here, we report on the growth of methylammonium lead iodide (MAPbI3) ultrathin films via co-deposition of PbI2 and CH3NH3I (MAI) on chemical-vapor-deposition-grown monolayer MoS2 as well as the corresponding photoluminescence (PL) properties at different growing stages. Atomic force microscopy and scanning electron microscopy measurements reveal the MoS2 tuned growth of MAPbI3 in a Stranski-Krastanov mode. PL and Kelvin probe force microscopy results confirm that MAPbI3/MoS2 heterostructures have a type-II energy level alignment at the interface. Temperaturedependent PL measurements on layered MAPbI3 (at the initial stage) and on MAPbI3 crystals in averaged size of 500 nm (at the later stage) show rather different temperature dependence as well as the phase transitions from tetragonal to orthorhombic at 120 and 150 K, respectively. Our findings are useful in fabricating MAPbI3/transition-metal dichalcogenide based innovative devices for wider optoelectronic applications.  相似文献   

13.
Transition metal dichalcogenides exhibit spin–orbit split bands at the K‐point that become spin polarized for broken crystal inversion symmetry. This enables simultaneous manipulation of valley and spin degrees of freedom. While the inversion symmetry is broken for monolayers, we show here that spin polarization of the MoS2 surface may also be obtained by interfacing it with graphene, which induces a space charge region in the surface of MoS2. Polarization induced symmetry breaking in the potential gradient of the space charge is considered to be responsible for the observed spin polarization. In addition to spin polarization we also observe a renormalization of the valence band maximum (VBM) upon interfacing of MoS2 with graphene. The energy difference between the VBM at the Γ‐point and K‐point shifts by ~150 meV between the clean and graphene covered surface. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
二维辉钼材料及器件研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
赖占平 《物理学报》2013,62(5):56801-056801
经过几十年的发展, 集成电路的特征尺寸将在10–15年内达到其物理极限, 替代材料的研究迫在眉睫. 石墨烯曾被寄予厚望, 但由于其缺乏带隙限制了在数字电路领域的应用. 近年来, 单层及多层辉钼材料由于具有优异的半导体性能, 有可能超过石墨烯成为硅的替代者而引起了微纳电子领域的广泛关注. 本文对近二年国际上辉钼半导体器件研制、辉钼半导体材料的性能 表征及制备方法研究等方面的进展进行了综述, 并对大面积单层材料的研制提出了值得关注的方向. 关键词: 2')" href="#">MoS2 辉钼材料 纳米材料 集成电路  相似文献   

15.
二氧化钒薄膜低温制备及其太赫兹调制特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对二氧化钒(VO2)薄膜在可调谐太赫兹功能器件中的应用,利用低温磁控溅射技术,在太赫兹和光学频段透明的BK7玻璃上制备出高质量的VO2薄膜.晶体结构和微观形貌分析显示薄膜为单相VO2单斜金红石结构,具有明显的(011)晶面择优取向,结构致密,表面平整.利用四探针技术和太赫兹时域光谱系统分析了薄膜的绝缘体-金属相变特性,发现相变过程中薄膜电阻率变化达到4个数量级,同时对太赫兹透射强度具有强烈的调制作用,调制深度高达89%.通过电学相变和太赫兹光学相变特性的对比研究,证实薄膜的电阻率突变主要与逾渗通路的形成有关,而太赫兹幅度的调制则来源于薄膜中载流子浓度的变化.该薄膜制备简单,成膜质量高,太赫兹调制性能优异,可应用于太赫兹开关和调制器等集成式太赫兹功能器件.  相似文献   

16.
In this paper, an ultra-compact single negative(SNG) electric waveguided metamaterial(WG-MTM) is first investigated and used to reduce the mutual coupling in E H planes of a dual-band microstrip antenna array. The proposed SNG electric WG-MTM unit cell is designed by etching two different symmetrical spiral lines on the ground, and has two stopbands operating at 1.86 GHz and 2.40 GHz. The circuit size is very compact, which is only λ_0/33.6 ×λ_0/15.1(where λ_0 is the wavelength at 1.86 GHz in free space). Taking advantage of the dual-stopband property of the proposed SNG electric WG-MTM, a dual-band microstrip antenna array operating at 1.86 GHz and 2.40 GHz with very low mutual coupling is designed by embedding a cross shaped array of the proposed SNG electric WG-MTM. The measured and simulated results of the designed dual-band antenna array are in good agreement with each other, indicating that the mutual coupling of the fabricated dual-band antenna array realizes 9.8/11.1 d B reductions in the H plane, 8.5/7.9 d B reductions in the E plane at1.86 GHz and 2.40 GHz, respectively. Besides, the distance of the antenna elements in the array is only 0.35 λ_0(where λ_0 is the wavelength at 1.86 GHz in free space). The proposed strategy is used for the first time to reduce the mutual coupling in E H planes of the dual-band microstrip antenna array by using ultra-compact SNG electric WG-MTM.  相似文献   

17.
傅重源  邢淞  沈涛  邰博  董前民  舒海波  梁培 《物理学报》2015,64(1):16102-016102
本文以钼酸钠、硫代乙酰胺为前驱体, 硅钨酸为添加剂, 成功用水热法合成高纯度纳米花状二硫化钼. 产物特性用X射线衍射(XRD)、能量色散谱(EDS)、扫描电子显微镜(SEM)进行表征. XRD和EDS图显示实验产物为二硫化钼, 且其结晶度和层状堆垛良好. SEM图谱则表明二硫化钼为纳米花状结构, 颗粒直径300 nm左右, 由几十上百片花瓣组成, 每片花瓣厚度十个纳米左右. 通过以硅钨酸为变量的梯度实验, 研究发现, 硅钨酸对于纳米花状MoS2的形成具有重要作用, 不添加硅钨酸, 无法形成纳米花状MoS2, 此外, 硅钨酸的剂量会影响合成MoS2的大小和形貌. 本文还对纳米花状二硫化钼的形成机理做了初步的讨论.  相似文献   

18.
无机类富勒烯MoS2纳米材料的制备与表征   总被引:6,自引:0,他引:6  
采用简单的沉淀法 ,利用聚乙二醇作为分散剂 ,盐酸羟铵为还原剂 ,以硫化铵为硫源合成了具有无机类富勒烯结构的纳米二硫化钼 ,通过粉末X射线衍射 (XRD)、扫描电镜 (SEM )和高分辨透射电镜 (HRTEM)等方法对其形貌和结构进行了表征 .结果表明 ,用聚乙二醇做分散剂 ,使其吸附在前驱物表面使颗粒环境呈现出一个相对隔绝的状态 ,在煅烧过程中 ,其空间位阻作用有利于MoS2 纳米颗粒形成无机类富勒烯结构 .  相似文献   

19.
Man Xu 《中国物理 B》2022,31(6):67802-067802
We numerically demonstrated a novel chiral metamaterial to achieve broadband asymmetric transmission (AT) of linearly polarized electromagnetic waves in terahertz (THz) band. The proposed metamaterial unit cell exhibits no rotational symmetry with vanadium dioxide (VO$_{2}$) inclusion embedded between Dirac semimetals (DSMs) pattern. The resonant frequency of AT can be dynamically tunable by varying the Fermi energy ($E_{\rm F}$) of the DSMs. The insulator-to-metal phase transition of VO$_{2}$ enables the amplitude of the AT to be dynamically tailored. The transmission coefficient $|T_{yx}|$ can be adjusted from 0.756 to nearly 0 by modifying the conductivity of VO$_{2}$. Meanwhile, the AT parameter intensity of linearly polarized incidence can be actively controlled from 0.55 to almost 0, leading to a switch for AT. When VO$_{2}$ is in its insulator state, the proposed device achieves broadband AT parameter greater than 0.5 from 1.21 THz to 1.80 THz with a bandwidth of 0.59 THz. When the incident wave propagates along the backward ($-z$) direction, the cross-polarized transmission $|T_{yx}|$ reaches a peak value 0.756 at 1.32 THz, whereas the value of $|T_{xy}|$ well below 0.157 in the concerned frequency. On the other hand, the co-polarized transmission $|T_{xx}|$ and $|T_{yy}|$ remained equal in the whole frequency range. This work provides a novel approach in developing broadband, tunable, as well as switchable AT electromagnetic devices.  相似文献   

20.
Hydrogen produced from water splitting is a renewable and clean energy source. Great efforts have been paid in searching for inexpensive and highly efficient photocatalysts. Here, significant enhancement of hydrogen production has been achieved by introducing ≈1 mol% of MoS2 to Cu2ZnSnS4 nanoparticles. The MoS2/Cu2ZnSnS4 nanoparticles showed a hydrogen evolution rate of ≈0.47 mmol g−1 h−1 in the presence of sacrificial agents, which is 7.8 times that of Cu2ZnSnS4 nanoparticles (0.06 mmol g−1 h−1). In addition, the MoS2/Cu2ZnSnS4 nanoparticles exhibited high stability, and only ≈3% of catalytic activity was lost after a long time irradiation (72 h). Microstructure investigation on the MoS2/Cu2ZnSnS4 nanoparticles reveals that the intimate contact between the nanostructured MoS2 and Cu2ZnSnS4 nanoparticles provides an effective one‐way expressway for photogenerated electrons transferring from the conduction band of Cu2ZnSnS4 to MoS2, thus boosting the lifetime of charge carriers, as well as reducing the recombination rate of electrons and holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号