首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we report a strong enhanced emission from laser produced plasma in air from iron oxide nano-material in comparison with the corresponding bulk samples. The enhancement strength differs with different Nd:YAG laser harmonics wavelengths. The analysis showed that such enhancement increased exponentially with the plasma evolution time, while it declines as the laser fluence increased. Experimental data analysis clearly showed that the observed enhancement is mainly associated with the change in the plasma electron density. We claim that this strong enhanced optical emission from laser produced plasma is due to the surface plasmon resonant excitation preferably on nano-oxide materials. Such experimental findings could improve the laser-induced breakdown spectroscopy sensitivity down to extremely low concentrations.  相似文献   

2.
The quantum interference between two spontaneous emission transitions, which are orthogonal, in a three-level system, can be greatly enhanced by using left-handed materials due to the focusing and phase compensation effects. The influence of the dispersion and dissipation of the materials on the quantum interference enhancement is investigated, and the enhancement of quantum interference is still significant. The quantum interference enhancement will result in a large quenching of the spontaneous emission, even if the distance between the materials and systems is larger than 10 wavelengths.  相似文献   

3.
CdSe/CdS核/壳型纳米晶的光谱特性   总被引:7,自引:0,他引:7  
以巯基乙酸为稳定剂制备了CdSe/CdS核/壳型纳米晶。用光吸收谱(Abs)、光致发光谱(PL)及光致发光激发谱(PLE)研究了CdS壳层对CdSe纳米晶电子结构,从而对其吸收和发光性能的影响。根据PL和PLE的结果以及带边激子精细结构的计算结果,我们用尺寸很小的纳米晶中所形成的基激缔合物解释了PL光谱与吸收边之间较大的Stokes位移。  相似文献   

4.
《Current Applied Physics》2014,14(8):1092-1098
In this paper, we propose the novel branched carbon nanotubes (B-CNTs) as efficient candidate for field emission applications. We believe that the double-stage structure of B-CNTs, beside formation of multiple thin branches at the apex of each vertical CNT, is responsible for the observed enhanced field emission behavior in B-CNTs. In this regard, we have derived an analytical model to evaluate the field enhancement factor (β) of the B-CNTs in comparison with CNTs, as the most popular cathode for field emission applications in the scientific society. The presented model also allows investigating the effect of different structural parameters on the field emission characteristic. We have also, compared the field emission characteristics of the B-CNTs with vertical CNTs experimentally. We observed a β value for B-CNTs which was around three times higher than CNTs. The observed enhancement in the experimental data was in good agreement with the presented analytical model.  相似文献   

5.
The field emission properties of electrophoretic deposition(EPD) carbon nanotubes (CNTs) film have been improved by depositing CNTs onto the titanium (Ti)-coated Si substrate, followed by vacuum annealing at 900 °C for 2 h, and the enhanced emission mechanism has been studied using X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy. Field emission measurements showed that the threshold electric field was decreased and the emission current stability was improved compared to that of EPD CNTs film on bare Si substrate. XRD and Raman spectroscopy investigations revealed that vacuum annealing treatment not only decreased the structural defects of CNTs but made a titanium carbide interfacial layer formed between CNTs and substrate. The field emission enhancement could be attributed to the improved graphitization of CNTs and the improved contact properties between CNTs and substrate including electrical conductivity and adhesive strength due to the formed conductive titanium carbide.  相似文献   

6.
We fabricated germanium-based photonic crystal (PhC) slabs and characterized them by photoluminescence (PL) measurements at room temperature. Air-bridge-type Ge PhC slabs showed stronger PL than non-processed Ge layers on SiO2 and than Ge PhC slabs on SiO2. This enhancement is attributed to improved extraction efficiency due to the PhC patterns and to suppressed light leakage into the substrate by utilizing the air-suspended structure. In particular, when flat photonic band-edge modes around the Γ point are tuned to the Ge emission range, larger enhancement of integrated PL intensity was observed. A maximum enhancement ratio of integrated intensity up to 22 was demonstrated in an air-suspended Ge PhC slab with appropriate structural parameters. This is the largest enhancement factor of Ge PL using photonic nanostructures reported so far.  相似文献   

7.
《Current Applied Physics》2019,19(6):756-761
An externally applied magnetic field was used to induce increased photocarrier transport along the high mobility channel in GaAs/AlGaAs modulation-doped heterostructures (MDH). The terahertz (THz) emission from GaAs/AlGaAs MDH increases with increasing magnetic field, applied parallel to the heterojunction. The THz emission enhancement factors due to the magnetic field in MDH are higher than in undoped GaAs/AlGaAs heterojunction and in bulk SI-GaAs. This demonstrates that properly utilizing the high-mobility channel for carrier transport promises to be a viable design consideration for efficient THz photoconductive antenna (PCA) devices. Moreover, it was observed that for MDH, as well as for an undoped GaAs/AlGaAs heterojunction, the enhancement for one magnetic field direction is greater than the enhancement for the opposite direction. This is in contrast to the symmetric enhancement with magnetic field direction observed in a bulk SI-GaAs. An analysis of photocarrier trajectories under an external magnetic field supports the explanation that the enhancement asymmetry with magnetic field direction in MDH is due to the cycloid motion of electrons as affected by the GaAs/AlGaAs interface.  相似文献   

8.
The temperature-dependent photoluminescence spectra of zinc oxide (ZnO) nanocrystals deposited inside the ultraviolet (UV) opal were studied. ZnO was grown in the voids between FCC packed SiO2 spheres using spray pyrolysis under ultrasonic vibration in the solution containing a zinc nitrate precursor. The ZnO nanoparticles inside opal matrix with UV photonic band-gap exhibit suppression of the excitonic emission and enhancement of the deep level emission. Suppression of the excitonic lines is due to the inhibition of spontaneous emission, while enhancement and broadening of the DL emission in the green spectral region is due to Purcell effect. The infiltration of ZnO nanoparticles inside the photonic crystal may be a useful technique to increase its emission efficiency in the selected spectral region.  相似文献   

9.
两步溶液法制备亚微米ZnO棒阵列及其退火后的发光   总被引:1,自引:1,他引:0       下载免费PDF全文
通过改变溶液浓度、酸碱度等生长条件,用两步化学溶液沉积法在玻璃衬底上制备出有序排列的亚微米级ZnO棒阵列,棒的截面呈正六边形,直径约为200~500nm。测量了样品的XRD谱和扫描电镜像,证明这些样品都是六方纤锌矿结构的ZnO单晶,且以[002]方向择优生长。将样品退火前后的PL光谱进行比较分析,发现退火后样品的发射光谱中紫外峰消失而长波段的红色发光峰红移并且增强(峰位由630nm左右移到720nm),而其激发光谱中的室温激子激发峰也增强。当退火时间增加到6h后,出现了由430nm的蓝峰和505nm绿峰组成的宽谱带蓝绿色发射。并对发光机理进行了讨论。  相似文献   

10.
The olivine type LiMPO4 (M=Ni, Mn and Co) materials were synthesized by solution combustion technique using glycine as fuel. The structural characterizations were explored to confirm the phase formation of materials. The scanning electron microscope was used to identify the morphology of olivine materials. The local structure and chemical bonding between MO6 octahedral and (PO4)3- tetrahedral groups were probed by Raman spectroscopy. Grain and grain boundaries were contributed for ion relaxation and dc conduction in olivine materials. Two orders of enhancement in ionic conductivity was observed in these olivine materials than the reported value. Among all the explored olivine samples, LiMnPO4 showed highest enhancement in conductivity due to weak Li–O bonding and largest unit cell volume.  相似文献   

11.
Controlled emission from dye saturated single and coupled microcavities   总被引:1,自引:0,他引:1  
Modified photoluminescence is demonstrated from the dye saturated porous silicon based single and coupled microcavities. When photonic cavity mode is weakly coupled to the emission states of the dye, photoluminescence line narrowing and intensity enhancement have been observed. Our experimental work and transfer matrix simulations and cavity modelling convincingly explain the tunability and optical field confinement within the microcavity. We also show that the photoluminescence enhancement is due to one-dimensional microcavity effect. These optically active hybrid materials from inexpensive fabrication may become an important consideration for many photonic applications.  相似文献   

12.
用一维光子带隙结构增强硫化镉双光子吸收研究   总被引:2,自引:2,他引:0  
用真空镀膜方法制备了含有单个CdS缺陷层的具有不同周期和结构参量的TiO2/SiO2一维光子晶体。用抽运一探测技术研究了CdS缺陷层的双光子吸收(TPA)现象。实验结果表明:一维光子晶体中CdS缺陷层的双光子吸收显著增强。不同周期和结构参量的一维光子晶体中CdS缺陷层的双光子吸收系数不同。双光子吸收的增强来源于由光局域化导致的缺陷层的电场强度的增加。缺陷层电场强度与一维光子晶体的结构有关,如周期,光子带隙的位置与宽度及缺陷模式等因素都会影响缺陷层电场强度。采用四分之一波长的高低折射率介质层和与入射波长匹配的缺陷模可以得到最大的缺陷层电场强度。  相似文献   

13.
The “far‐field” effect of metal nanoparticles (NPs), when chromophores localized nearby metal NPs (typically the distance >λ/10), is an important optical effect to enhance emission in photoluminescence. The far‐field effect originates mainly from the interaction between origin emission and mirror‐reflected emission, resulting in the increased irradiative rate of chromophores on the mirror‐type substrate. Here, the far‐field effect is used to improve emission efficiency of polymer light‐emitting diodes (PLEDs). A universal performance improvement is achieved for the full visible light (red, green, blue) PLEDs, utilizing gold (Au) NPs to modify the indium tin oxide (ITO) substrates; this is shown by experimental and theoretical simulation to mainly come from the far‐field effect. The optimized distance, between the NPs and chromophores with visible light emission ranging from 400 to 700 nm, is 80–120 nm. Thus the scope of the far‐field may overlap the light‐emitting profile very well to enhance the efficiency of optoelectronic devices. The 30–40% enhancement is obtained for different color‐emitting materials through distance optimization. The far‐field effect is demonstrated to enhance device performance for materials in the full‐visible spectral range, which extends the optoelectric applications of Au NPs.  相似文献   

14.
J.H. Cai  G. Ni  G. He  Z.Y. Wu 《Physics letters. A》2008,372(22):4104-4108
ZnO thin films on fused quartz substrates were prepared by a glycol-based Pechini method. The structural and optical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), optical transmittance spectrum, and photoluminescence (PL) spectrum. A red emission around 700 nm was found in PL spectrum, and its peak intensity gained a strong enhancement (140%) while annealing temperature increased from 700 °C to 800 °C. The red emission was ascribed to the possible high defect density in boundary layers of nanocrystalline grains.  相似文献   

15.
ABSTRACT

Nonlinear optical materials (NLO) have been garnering attention due to their role in optical data storage, optical communication and laser technology. Organic crystals have emerged as an extremely important class of NLO materials, since their NLO properties compare very well with traditional inorganic NLO materials like KCl, LiNbO3, KDP (potassium dihydrogen phosphate), etc. They offer the additional advantage that they can be grown relatively inexpensively from solution close to room temperature, unlike the inorganic NLO materials which are grown from high temperature melts. In the present work, organic transparent single crystals of methyl para-hydroxy benzoate (MHB) were grown by slow evaporation solution growth technique (SEST) from aqueous solution at room temperature. The changes in structural, electrical and optical properties of gamma irradiated MHB single crystals were studied using X-ray diffraction (XRD), UV–Visible absorption spectroscopy, Photo-luminescence (PL), Fourier transform infrared (FTIR) spectroscopy and AC conductivity measurements at room temperature. The polished MHB single crystals were irradiated with gamma rays of doses 10 and 15 kilogray (kGy). From the XRD analysis, it was observed that gamma irradiation for these doses drastically decreases the crystallinity. The optical absorption constants were examined by UV-Visible absorption spectroscopy, measured over the wavelength range of 200–800?nm, at normal incidence. The optical band gap as estimated from the Tauc plot ((αhν)2 vs hν) was found to be reduced with increasing gamma irradiation doses. PL spectra showed emission at wavelengths of 361?nm (3.43?eV) and 452?nm (2.74?eV), with enhanced intensities for the irradiated crystals. FTIR spectroscopy was utilised to identify the functional groups of MHB and indicated the rupture of specific types of bonds with gamma irradiation. Apart from that, the enhancement of AC conductivity with gamma irradiation was also observed for the gamma irradiated crystals.  相似文献   

16.
徐天宁  李翔  贾文旺  隋成华  吴惠桢 《物理学报》2015,64(24):245201-245201
五边形截面的单晶Ag纳米线对ZnO量子点荧光具有增强的现象. 为解释这一现象, 利用时域有限差分法对五边形截面的Ag纳米线的局域表面等离子体共振模式进行了理论模拟. 结果表明, 五边形截面的Ag纳米线在紫外区域存在两个消光峰, 分别由Ag纳米线的横向偶极共振(340 nm)和四极共振(375 nm)引起; 这两个消光峰与ZnO量子点荧光增强峰相一致, 而且随着Ag纳米线的半径增大而红移; 消光峰对应的共振模式取决于Ag纳米线的截面形状; 根据Ag纳米线电场增强倍数与激发光波长变化关系曲线可知, 最大增强电场位于五边形截面的顶点处, 而边线处电场增强较小. 理论模拟的结果较好地解释了Ag纳米线/ZnO量子点体系的荧光增强现象, 也为Ag纳米线在提高半导体材料发光效率、生物探测等方面的应用提供有益的参考.  相似文献   

17.
Near-field photoluminescence imaging spectroscopy of naturally occurring GaAs quantum dots (QDs) is presented. We successfully mapped out center-of -mass wave functions of an exciton confined in a GaAs QD in real space due to the enhancement of spatial resolution up to 30 nm. As a consequence, we discovered that the spatial profile of the exciton emission, which reflects the shape of a monolayer-high island, differs from that of biexciton emission, due to different distributions of the polarization field for the exciton and biexciton recombinations. This novel technique can be extensively applied to wave function engineering in the design and the fabrication of quantum devices.  相似文献   

18.
Experimental and theoretical study of thermal emission, transmission, and reflection from bare and coated one-dimensional (1D) and two-dimensional (2D) grating structures on GaAs substrates was carried out. Our experiments have revealed strong correlation between the spectra of thermal emission and the microstructure dimensions. The emissivity enhancement and diminution depends on the groove depth and the spectral range (below or above Rayleigh wavelength). The effects can be attributed to diverse mechanisms: emission escape due to emerging diffraction-order beams, vertical-cavity modes, enhanced optical transmission phenomenon, and electron plasma effect.  相似文献   

19.
We report the enhancement of sub-bandgap photoluminescence from silicon via the Purcell effect. We couple the defect emission from silicon, which is believed to be due to hydrogen incorporation into the lattice, to a photonic crystal (PhC) nanocavity. We observe an up to 300-fold enhancement of the emission at room temperature at 1550 nm, as compared to an unpatterned sample, which is then comparable to the silicon band-edge emission. We discuss the possibility of enhancing this emission even further by introducing additional defects by ion implantation, or by treating the silicon PhC nanocavity with hydrogen plasma.  相似文献   

20.
The newly prepared ionic liquid, 1-butyl-3-methylimidazolium benzoate, ([bmim][BA]), was found to enhance the fluorescence of Eu3+ and Tb3+. The fluorescence enhancement resulted from a sensitization of the lanthanide fluorescence by the benzoate anion of the ionic liquid, [bmim][BA], and a reduction in the non-radiative channels in the non-aqueous environment provided by the ionic liquid. However, the fluorescence enhancement of the lanthanides in the ionic liquid was limited due to the operation of the inner filter effect, which resulted from the strong absorption of the benzoate. The inner filter effect was minimized by observing the Eu3+ fluorescence using a front face geometry and also by diluting the lanthanide-[bmim][BA] system, using another ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][Tf2N]), as a solvent. In the case of Tb3+, the emission from the lanthanide was masked by the strong emission from the ionic liquid in the region 450-580 nm. The long lived Tb3+ emission was therefore observed using delayed gated detection, where an appropriate delay was used to discriminate against the short lived emission from the ionic liquid. The large fluorescence enhancement due to ligand sensitized fluorescence observed with [bmim][BA] diluted in [bmim][Tf2N], leads to nanomolar detection of the lanthanides. This is, to the best of our knowledge, the first report of an ionic liquid being employed for ligand sensitized fluorescence enhancement of lanthanides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号