共查询到20条相似文献,搜索用时 15 毫秒
1.
Employing first-principles methods,based on the density function theory,and using the LANL2DZ basis sets,the ground-state geometric,the stable and the electronic properties of Aun-2Y2 clusters are investigated in this paper.Meanwhile,the differences in property among pure gold clusters,pure yttrium clusters,gold clusters doped with one yttrium atom,and gold clusters doped with two yttrium atoms are studied.We find that when gold clusters are doped by two yttrium atoms,the odd-even oscillatory behaviours of Aun-1Y and Aun disappear.The properties of Aun-2Y2 clusters are close to those of pure yttrium clusters. 相似文献
2.
Structural and bonding properties of ScSi_n~-(n=2~6) clusters:photoelectron spectroscopy and density functional calculations 下载免费PDF全文
Anion ion photoelectron spectroscopy and density functional theory (DFT) are used to investigate the electronic and structural properties of ScSin- (n=2sim6) clusters and their neutrals. We find that the structures of ScSin- are similar to those of Sin+1-. The most stable isomers of ScSin- cluster anions and their neutrals are similar for n=2, 3 and 5 but different for n=4 and 6, indicating that the charge effect on geometry is size dependent for small scandium-silicon clusters. The low electron binding energy (EBE) tails observed in the spectra of ScSi4,6- can be explained by the existence of less stable isomers. A comparison between ScSin- and VSin- clusters shows the effects of metal size and electron configuration on cluster geometries. 相似文献
3.
A density functional theory study on size-dependent structures,stabilities,and electronic properties of bimetallic M_nAg_m(M=Na,Li;n + m≤7) clusters 下载免费PDF全文
The equilibrium geometries,relative stabilities,and electronic properties of Mn Agm(M=Na,Li;n + m ≤ 7) as well as pure Ag n,Na n,Li n(n ≤ 7) clusters are systematically investigated by means of the density functional theory.The optimized geometries reveal that for 2 ≤ n ≤ 7,there are significant similarities in geometry among pure Ag n,Na n,and Li n clusters,and the transitions from planar to three-dimensional configurations occur at n = 7,7,and 6,respectively.In contrast,the first three-dimensional(3D) structures are observed at n + m = 5 for both Na n Ag m and Li n Ag m clusters.When n + m ≥ 5,a striking feature is that the trigonal bipyramid becomes the main subunit of Li n Ag m.Furthermore,dramatic odd-even alternative behaviours are obtained in the fragmentation energies,secondorder difference energies,highest occupied and lowest unoccupied molecular orbital energy gaps,and chemical hardness for both pure and doped clusters.The analytic results exhibit that clusters with an even electronic configuration(2,4,6) possess the weakest chemical reactivity and more enhanced stability. 相似文献
4.
The lowest-energy structures and the electronic properties of Mo2nNn(n=1-5) clusters have been studied by using the density functional theory(DFT) simulating package DMol 3 in the generalized gradient approximation(GGA).The resulting equilibrium geometries show that the lowest-energy structures are dominated by central cores which correspond to the ground states of Mo n(n = 2,4,6,8,10) clusters and nitrogen atoms which surround these cores.The average binding energy,the adiabatic electron affinity(AEA),the vertical electron affinity(VEA),the adiabatic ionization potential(AIP) and the vertical ionization potential(VIP) of Mo2nNn(n=1-5) clusters have been estimated.The HOMO-LUMO gaps reveal that the clusters have strong chemical activities.An analysis of Mulliken charge distribution shows that charge-transfer moves from Mo atoms to N atoms and increases with cluster size. 相似文献
5.
The density functional theory B3PW91 with LANL2DZ basis sets has been used to study the possible geometries of Mg2Nin(n = 1–8) clusters. For the lowest energy structures of the clusters, stabilities, electronic properties, and natural bond orbital(NBO) are calculated and discussed. The results show that the doped Mg atoms reduce the stabilities of pure Ni clusters. The Mg2Ni2, Mg2Ni4, and Mg2Ni6clusters are more stable than neighboring clusters. The system appears magic number characteristics. In addition, the hybridization phenomenon occurs, owing to the interaction of Mg and Ni. The result of charge transfer is that Ni atom is negative and the Mg atom is positive. We also conclude that the 3p and 4d orbitals of the Ni atom have an effect on the stabilities of the clusters. 相似文献
6.
The geometries of Mg n Ni 2(n = 1-6) clusters are studied by using the hybrid density functional theory(B3LYP) with LANL2DZ basis sets.For the ground-state structures of Mg n Ni 2 clusters,the stabilities and the electronic properties are investigated.The results show that the groundstate structures and symmetries of Mg clusters change greatly due to the Ni atoms.The average binding energies have a growing tendency while the energy gaps have a declining tendency.In addition,the ionization energies exhibit an odd-even oscillation feature.We also conclude that n = 3,5 are the magic numbers of the Mg n Ni 2 clusters.The Mg 3 Ni 2 and Mg 5 Ni 2 clusters are more stable than neighbouring clusters,and the Mg 4 Ni 2 cluster exhibits a higher chemical activity. 相似文献
7.
WnC0,± (n=1-6) clusters are investigated by using the density functional theory (DFT) at the B3LYP/LANL2DZ level. We find that the neutral, anionic and cationic ground state structures are similar within the same size, and constituted by substituting a C atom for one W atom in the structures of Wn+1 clusters. The natural bond orbital (NBO) charge analyses indicate that the direction of electron transfer is from the W atom to the 2p orbital of the C atom. In addition, the calculated infrared spectra of the WnC0,± (n=2-6) clusters manifest that the vibrational frequencies of neutral, anionic and cationic clusters are similar in a range of 80 cm-1-864 cm-1. The high frequency, strong peak modes are found to be an almost stretched deformation of the carbide atom. Finally, the polarizabilities of WnC0,± (n=1-6) clusters are also discussed. 相似文献
8.
This paper investigates the geometrical structures and relative stabilities of neutral AlS n(n = 2-9) using the density functional theory.Structural optimisation and frequency analysis are performed at the B3LYP/6-311G(d) level.The ground state structures of the AlS n show that the sulfur atoms prefer not only to evenly distribute on both sides of the aluminum atom but also to form stable structures in AlS n clusters.The structures of pure S n are fundamentally changed due to the doping of the Al atom.The fragmentation energies and the second-order energy differences are calculated and discussed.Among neutral AlS n(n = 2-9) clusters,AlS 4 and AlS 6 are the most stable. 相似文献
9.
Using density-functional calculations within the generalized gradient approximation (GGA)+U framework,we investigate the structural,electronic,and magnetic properties of the ground states of SrFeOn (n = 2 and 2.5).The magnetism calculations show that the ground states of both SrFeO2 and SrFeO2.5 have G type antiferromagnetic ordering,with indirect band gaps of 0.89 and 0.79 eV,respectively.The electronic structure calculations demonstrate that Fe cations are in the high-spin state of (dz2 )2(dxz,dyz)2(dxy)1(dx2 y2 )1(S = 2),unlike the previous prediction of (dxz,dyz)3(dxy)1(dz2 )1(dx2 y2 )1(S = 2) for SrFeO2,and in the high-spin state of (dxy,dxz,dyz,dx2 y2 ,dz2 )5(S = 5/2) for SrFeO2.5. 相似文献
10.
Using a first-principles approach based on density functional theory,this paper studies the electronic and dynamical properties of β-V2O5.A smaller band gap and much wider split-off bands have been observed in comparison with αV2O5.The Ramanand infrared-active modes at the Γ point of the Brillouin zone are evaluated with LO/TO splitting,where the symbol denotes the longitudinal and transverse optical model.The nonresonant Raman spectrum of a βV2O5 powder sample is also computed,providing benchmark theoretical results for the assignment of the experimental spectrum.The computed spectrum agrees with the available experimental data very well.This calculation helps to gain a better understanding of the transition from αto β-V2O5. 相似文献
11.
The molecular geometries and dissociation energies of AnO (An = Bk–Lr) molecules were first obtained at thecoupled-cluster single-, double-, and perturbative triple-excitations [CCSD(T)] level of theory. Four hybrid functionals,B3LYP, M06-2X, TPSSh, and PBE0, were also employed in the calculations for the sake of comparison. In comparison ofthe CCSD(T) results, B3LYP, TPSSh, and PBE0 functionals can obtain more appropriate results than M06-2X and MP2.The analyses on molecular orbitals show that the 7s, 6d, and 5f atomic orbitals of actinide (An) atoms participate in thebonding of An–O bonds. The partial covalent nature between An and O atoms is revealed by QTAIM analyses. 相似文献
12.
用密度泛函理论的杂化密度泛函B3LYP方法在6-31G*基组水平上对[Mg(NH2)2]n(n=1—5)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.对最稳定结构的振动特性、成键特性、电荷特性等进行了理论研究.结果表明:团簇易形成链状结构,Mg—N键长为0.190—0.234 nm,N—H键长为0.101—0.103 nm,H—N—H键角为100.2°—107.5°;团簇中M
关键词:
2)2]n(n=1—5)团簇')" href="#">[Mg(NH2)2]n(n=1—5)团簇
密度泛函理论
结构与性质
储氢材料 相似文献
13.
A comparative study on geometries,stabilities, and electronic properties between bimetallic AgnX(X=Au,Cu;n=1-8)and pure silver clusters 下载免费PDF全文
Using the meta-generalized gradient approximation (meta-GGA) exchange correlation TPSS functional, the geo- metric structures, the relative stabilities, and the electronic properties of bimetallic Ag n X (X=Au, Cu; n=1–8) clusters are systematically investigated and compared with those of pure silver clusters. The optimized structures show that the transition point from preferentially planar to three-dimensional structure occurs at n = 6 for the Ag n Au clusters, and at n = 5 for Ag n Cu clusters. For different-sized Ag n X clusters, one X (X=Au or Cu) atom substituted Ag n+1 structure is a dominant growth pattern. The calculated fragmentation energies, second-order differences in energies, and the highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy gaps show interesting odd–even oscillation behaviours, indicating that Ag 2,4,6,8 and Ag 1,3,5,7 X (X=Au, Cu) clusters keep high stabilities in comparison with their neighbouring clusters. The natural population analysis reveals that the charges transfer from the Ag n host to the impurity atom except for the Ag 2 Cu cluster. Moreover, vertical ionization potential (VIP), vertical electronic affinity (VEA), and chemical hardness (η) are discussed and compared in depth. The same odd–even oscillations are found for the VIP and η of the Ag n X (X=Au, Cu; n=1–8) clusters. 相似文献
14.
<正>Using first-principles total energy method,we study the structural,the electronic and the magnetic properties of the MnNi(110) c(2×2) surface alloy.Paramagnetic,ferromagnetic,and antiferromagnetic surfaces in the top layer and the second layer are considered.It turns out that the substitutional alloy in the outermost layer with ferromagnetic surface is the most stable in all cases.The buckling of the Mn-Ni(110) c(2×2) surface alloy in the top layer is as large as 0.26 A(1 A=0.1 nm) and the weak rippling is 0.038 A in the third layer,in excellent agreement with experimental results.It is proved that the magnetism of Mn can stabilize this surface alloy.Electronic structures show a large magnetic splitting for the Mn atom,which is slightly higher than that of Mn-Ni(100) c(2×2) surface alloy(3.41 eV) due to the higher magnetic moment.A large magnetic moment for the Mn atom is predicted to be 3.81μB.We suggest the ferromagnetic order of the Mn moments and the ferromagnetic coupling to the Ni substrate,which confirms the experimental results.The magnetism of Mn is identified as the driving force of the large buckling and the work-function change.The comparison with the other magnetic surface alloys is also presented and some trends are predicted. 相似文献
15.
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G*基组水平上对(Ca3N2)n(n=1—4)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的振动特性、成键特性、电荷特性和稳定性等进行了理论分析.结果表明,(Ca3N2)n(n=1—4)团簇最稳定构型中N原子为3—5配位,Ca—N键长为0.231—0.251nm,Ca—Ca键长为0.295—0.358nm;N原子的自然电荷在-1.553e—-2.241e之间,Ca原子的自然电荷在1.035e—1.445e之间,Ca和N原子间相互作用呈现较强的离子性,Ca3N2和(Ca3N2)3团簇有相对较高的动力学稳定性.
关键词:
3N2)n(n=1—4)团簇')" href="#">(Ca3N2)n(n=1—4)团簇
密度泛函理论
结构与性质 相似文献
16.
Structural, electronic, and magnetic properties of boron cluster anions doped with aluminum: BnAl- (2≤n≤9) 下载免费PDF全文
The geometrical structures, relative stabilities, electronic and magnetic properties of small B n Al (2 ≤ n ≤ 9) clusters are systematically investigated by using the first-principles density functional theory. The results show that the Al atom prefers to reside either on the outer-side or above the surface, but not in the centre of the clusters in all of the most stable B n Al (2 ≤ n ≤ 9) isomers and the one excess electron is strong enough to modify the geometries of some specific sizes of the neutral clusters. All the results of the analysis for the fragmentation energies, the second-order difference of energies, and the highest occupied-lowest unoccupied molecular orbital energy gaps show that B 4 Al and B 8 Al clusters each have a higher relative stability. Especially, the B 8 Al cluster has the most enhanced chemical stability. Furthermore, both the local magnetic moments and the total magnetic moments display a pronounced odd-even oscillation with the number of boron atoms, and the magnetic effects arise mainly from the boron atoms except for the B 7 Al and B 9 Al clusters. 相似文献
17.
Density functional theory has been applied to study the geometric structures, relative stabilities, and electronic properties of cationic [AunRb]+ and Aun + 1+ (n = 1–10) clusters. For the lowest energy structures of [AunRb]+ clusters, the planar to three-dimensional transformation is found to occur at cluster size n = 4 and the Rb atoms prefer being located at the most highly coordinated position. The trends of the averaged atomic binding energies, fragmentation energies, second-order difference of energies, and energy gaps show pronounced even–odd alternations. It indicated that the clusters containing odd number of atoms maintain greater stability than the clusters in the vicinity. In particular, the [Au6Rb]+ clusters are the most stable isomer for [AunRb]+ clusters in the region of n = 1–10. The charges in [AunRb]+ clusters transfer from the Rb atoms to Aun host. Density of states revealed that the Au-5d, Au-5p, and Rb-4p orbitals hardly participated in bonding. In addition, it is found that the most favourable channel of the [AunRb]+ clusters is Rb+ cation ejection. The electronic localisation function (ELF) analysis of the [AunRb]+ clusters shown that strong interactions are not revealed in this study. 相似文献
18.
Cheng-Gang Li Jin-Hai Gao Jie Zhang Wan-Ting Song Shui-Qing Liu Si-Zhuo Gao 《Molecular physics》2013,111(4):382-394
The structures, stabilities and electronic properties of neutral and anionic B3Sin (n?=?1–17) clusters have been systemically investigated on the basis of density functional theory at the B3LYP/6-311?+?G(d) level and CALYPSO structure prediction method. The structural searches show that three boron atoms tend to form B3 triangle encapsulated into Sin cages with the increasing number of silicon atoms. Most of the lowest energy structures can be derived by using the squashed pentagonal bipyramid structure of B3Si4 and B3Si4? as the major building unit. The relative stabilities are studied based on the calculated binding energies, second-order difference of energies and HOMO–LUMO gaps of the lowest energy structures. In addition, Hirshfeld, natural population analysis, Bader approaches and natural electronic configuration are performed to explore the charge transfer. At last, molecular orbital, magnetic properties, IR, Raman and UV–vis spectra are also, respectively, analysed for providing strong support for essential theoretical and experimental research. 相似文献
19.
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G*基组水平上对(Ca3N2)n(n=1-4)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的振动特性、成键特性、电荷特性和稳定性等进行了理论分析.结果表明,(Ca3N2)n(n=1-4)团簇最稳定构型中N原子为3-5配位,Ca-N键长为0.231-0.251 mm,Ca-Ca键长为0.295-0.358 nm;N原子的自然电荷在-1.553 e--2.241 e之间,Ca原子的自然电荷在1.035e-1.445e之间,Ca和N原子间相互作用呈现较强的离子性,Ca3N2和(Ca3N2)3团簇有相对较高的动力学稳定性. 相似文献
20.
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G*基组水平上对(LiN3)n(n=1~2)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的振动特性、成键特性和电荷布局等性质进行了理论研究.结果表明,LiN3团簇最稳定构型为直线构型;(LiN3)n(n=1~2)团簇中N-N键长在0.1146~0.1203nm之间,N-Li键长在0.1722~0.1987nm之间;团簇中Li原子全部显正电性,越靠近Li原子的N原子负电性越强,在直线构型的N3-离子中,两端的N原子均具负电荷,而中心N原子具正电荷. 相似文献