首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single and multiple n-channel junctionless nanowire transistors(JNTs) are fabricated and experimentally investigated at variable temperatures. Clear current oscillations caused by the quantum-confinement effect are observed in the curve of drain current versus gate voltage acquired at low temperatures(10 K–100 K) and variable drain bias voltages(10 mV–90 mV). Transfer characteristics exhibit current oscillation peaks below flat-band voltage(VFB) at temperatures up to 75 K,which is possibly due to Coulomb-blocking from quantum dots, which are randomly formed by ionized dopants in the just opened n-type one-dimensional(1D) channel of silicon nanowires. However, at higher voltages than VFB, regular current steps are observed in single-channel JNTs, which corresponds to the fully populated subbands in the 1D channel. The subband energy spacing extracted from transconductance peaks accords well with theoretical predication. However, in multiple-channel JNT, only tiny oscillation peaks of the drain current are observed due to the combination of the drain current from multiple channels with quantum-confinement effects.  相似文献   

2.
王昊  韩伟华  赵晓松  张望  吕奇峰  马刘红  杨富华 《中国物理 B》2016,25(10):108102-108102
We study electric-field-dependent charge delocalization from dopant atoms in a silicon junctionless nanowire transistor by low-temperature electron transport measurement. The Arrhenius plot of the temperature-dependent conductance demonstrates the transport behaviors of variable-range hopping(below 30 K) and nearest-neighbor hopping(above 30 K).The activation energy for the charge delocalization gradually decreases due to the confinement potential of the conduction channel decreasing from the threshold voltage to the flatband voltage. With the increase of the source–drain bias, the activation energy increases in a temperature range from 30 K to 100 K at a fixed gate voltage, but decreases above the temperature of 100 K.  相似文献   

3.
马刘红  韩伟华  王昊  吕奇峰  张望  杨香  杨富华 《中国物理 B》2016,25(6):68103-068103
Silicon junctionless nanowire transistor(JNT) is fabricated by femtosecond laser direct writing on a heavily n-doped SOI substrate.The performances of the transistor,i.e.,current drive,threshold voltage,subthreshold swing(SS),and electron mobility are evaluated.The device shows good gate control ability and low-temperature instability in a temperature range from 10 K to 300 K.The drain currents increasing by steps with the gate voltage are clearly observed from 10 K to50 K,which is attributed to the electron transport through one-dimensional(1D) subbands formed in the nanowire.Besides,the device exhibits a better low-field electron mobility of 290 cm~2·V~(-1)·s~(-1),implying that the silicon nanowires fabricated by femtosecond laser have good electrical properties.This approach provides a potential application for nanoscale device patterning.  相似文献   

4.
The ionized dopants, working as quantum dots in silicon nanowires, exhibit potential advantages for the development of atomic-scale transistors. We investigate single electron tunneling through a phosphorus dopant induced quantum dots array in heavily n-doped junctionless nanowire transistors. Several subpeaks splittings in current oscillations are clearly observed due to the coupling of the quantum dots at the temperature of 6 K. The transport behaviors change from resonance tunneling to hoping conduction with increased temperature. The charging energy of the phosphorus donors is approximately 12.8 meV. This work helps clear the basic mechanism of electron transport through donor-induced quantum dots and electron transport properties in the heavily doped nanowire through dopant engineering.  相似文献   

5.
An experimental realization of a ballistic superconductor proximitized semiconductor nanowire device is a necessary step towards engineering topological quantum electronics. Here, we report on ballistic transport in In Sb nanowires grown by molecular-beam epitaxy contacted by superconductor electrodes. At an elevated temperature, clear conductance plateaus are observed at zero magnetic field and in agreement with calculations based on the Landauer formula. At lower temperature, we have observed characteristic Fabry–Pérot patterns which confirm the ballistic nature of charge transport.Furthermore, the magnetoconductance measurements in the ballistic regime reveal a periodic variation related to the Fabry–Pérot oscillations. The result can be reasonably explained by taking into account the impact of magnetic field on the phase of ballistic electron's wave function, which is further verified by our simulation. Our results pave the way for better understanding of the quantum interference effects on the transport properties of In Sb nanowires in the ballistic regime as well as developing of novel device for topological quantum computations.  相似文献   

6.
吴歆宇  韩伟华  杨富华 《物理学报》2019,68(8):87301-087301
在小于10 nm的沟道空间中,杂质数目和杂质波动范围变得十分有限,这对器件性能有很大的影响.局域纳米空间中的电离杂质还能够展现出量子点特性,为电荷输运提供两个分立的杂质能级.利用杂质原子作为量子输运构件的硅纳米结构晶体管有望成为未来量子计算电路的基本组成器件.本文结合安德森定域化理论和Hubbard带模型对单个、分立和耦合杂质原子系统中的量子输运特性进行了综述,系统介绍了提升杂质原子晶体管工作温度的方法.  相似文献   

7.
在铜(Cu)和非晶铟镓锌氧化物(a-IGZO)之间插入30 nm厚的钼(Mo)接触层, 制备了具有Cu-Mo源漏电极的a-IGZO薄膜晶体管(TFT). Mo接触层不仅能够抑制Cu与a-IGZO有源层之间的扩散, 而且提高了Cu电极与玻璃基底以及栅极绝缘层的结合强度. 制备的Cu-Mo结构TFT与纯Cu 结构TFT相比, 具有较高的迁移率(~9.26 cm2·V-1·s-1)、更短的电流传输长度(~0.2 μm)、更低的接触电阻(~1072 Ω)和有效接触电阻率(~1×10-4Ω·cm2), 能够满足TFT 阵列高导互联的要求.  相似文献   

8.
彭小芳  王新军  龚志强  陈丽群 《物理学报》2011,60(12):126802-126802
利用散射矩阵方法,比较了被一维凸形量子点、凹形量子点调制的量子线中膨胀模的声子输运和热导性质. 研究结果表明: 声子的输运概率与热导受制于量子点几何结构,具有凸形量子点结构的量子线中声子输运概率与热导KCV大于具有凹形量子点结构的量子线中声子输运概率与热导KCC. 两者热导之比KCV/KCC依赖于一维量子点的具体结构,且随着温度及主量子线与量子点横截面的边长差ΔSL的增加而增加. 两种具有不同散射结构的一维量子线中热输运性质的区别在于凸形量子点结构中膨胀模数量总是大于凹形量子点结构中膨胀模数量的缘故. 关键词: 声学声子输运 热导 量子结构  相似文献   

9.
The understanding of mesoscopic transport has now attained an ultimate simplicity. Indeed, orthodox quantum kinetics would seem to say little about mesoscopics that has not been revealed — nearly effortlessly — by more popular means. Such is far from the case, however. The fact that kinetic theory remains very much in charge is best appreciated through the physics of a quantum point contact. While discretization of its conductance is viewed as the exclusive result of coherent, single-electron-wave transmission, this does not begin to address the paramount feature of all metallic conduction: dissipation. A perfect quantum point contact still has finite resistance, so its ballistic carriers must dissipate the energy gained from the applied field. How do they manage that? The key is in standard many-body quantum theory, and its conservation principles.  相似文献   

10.
彭小芳  陈丽群  罗勇锋  刘凌虹  王凯军 《物理学报》2013,62(5):56805-056805
采用散射矩阵方法, 研究了含双T形量子结构的量子波导中声学声子输运和热导性质. 结果表明: 在极低温度, 双T形量子结构能增强低温热导; 相反地, 在相对较高的温度范围, 双T形量子结构能降低低温热导. 而在整个低温范围内, 增加散射区域最窄处的宽度能增强低温热导. 计算结果表明可以通过调节含双T形量子结构的量子波导结构来调控声子的输运概率和热导. 关键词: 声学声子输运 热导 量子结构  相似文献   

11.
叶伏秋  李科敏  彭小芳 《物理学报》2011,60(3):36806-036806
利用弹性近似模型和散射矩阵方法,研究了低温下多通道量子结构中的弹性声学声子输运的性质. 计算结果表明,对于低频声学声子,只要通道的横向宽度相同,各通道中最低阶模的透射概率几乎不受其他结构参数的影响,且其数值都接近于0.25;而高频声学声子在各通道中的透射概率与结构参数密切相关,不同通道中的透射概率不同;当温度非常低时,各通道的热导都接近于量子化热导π2k2BT/(3h)的四分之一;随着温度的升高,各通道的热导增减 关键词: 声学声子输运 热导 量子结构  相似文献   

12.
姚凌江  王玲玲 《物理学报》2008,57(5):3100-3106
采用散射矩阵方法,研究了在应力自由和硬壁两种典型的边界条件下含半圆弧形腔的量子波导中声学声子输运和热导性质.结果表明在两种边界条件下声子透射谱和热导有着不同的特征.在应力自由边界条件下,能观察到普适的量子化热导现象,当结构为一理想的量子线时,在低温区域有一个量子化平台出现,而当半圆弧形结构存在时,非均匀横向宽度引发的弹性散射使得量子化平台被破坏;在硬壁边界条件下,不可能观察到量子化热导现象,热导随温度的增加单调上升;计算结果表明还可以通过调节半圆弧形结构的半径来调控声子的输运概率和热导. 关键词: 声学声子输运 热导 量子体系  相似文献   

13.
Within the framework of the effective-mass approximation, the exciton states and interband optical transitions in InxGa1−xN/GaN strained quantum dot (QD) nanowire heterostructures are investigated using a variational method, in which the important built-in electric field (BEF) effects, dielectric-constant mismatch and three-dimensional confinement of the electron and hole in InxGa1−xN QDs are considered. We find that the strong BEF gives rise to an obvious reduction of the effective band gap of QDs and leads to a remarkable electron-hole spatial separation. The BEF, QD height and radius, and dielectric mismatch effects have a significant influence on exciton binding energy, electron interband optical transitions, and the exciton oscillator strength.  相似文献   

14.
吴宇  蔡绍洪  邓明森  孙光宇  刘文江  岑超 《物理学报》2017,66(11):116501-116501
高分子导热材料的有效调控受到了日益广泛的关注.应用密度泛函理论(DFT)、中央插入延展(central insertion scheme,CIS)方法及非平衡格林函数(NEGF)理论,对包含432个原子、长18.533 nm的聚乙烯单链量子热输运的同位素效应进行了研究.计算结果表明,室温下长100 nm的纯12C聚乙烯单链的热导率理论上限高达314.1 W·m~(-1)·K~(-1);对于~(12)C聚乙烯单链,其他条件一定时,~(14)C掺杂引起的热导同位素效应比~(13)C更为显著;室温下纯~(12)C聚乙烯单链中~(14)C掺杂原子百分数为50%时同位素效应最显著,此时平均热导比未掺杂时下降了51%.这对探索聚乙烯材料热输运的同位素影响机理具有十分积极的意义.  相似文献   

15.
In this paper, we demonstrate that a Schottky drain can improve the forward and reverse blocking voltages(BVs)simultaneously in AlGaN/GaN high-electron mobility transistors(HEMTs). The mechanism of improving the two BVs is investigated by analysing the leakage current components and by software simulation. The forward BV increases from72 V to 149 V due to the good Schottky contact morphology. During the reverse bias, the buffer leakage in the Ohmicdrain HEMT increases significantly with the increase of the negative drain bias. For the Schottky-drain HEMT, the buffer leakage is suppressed effectively by the formation of the depletion region at the drain terminal. As a result, the reverse BV is enhanced from-5 V to-49 V by using a Schottky drain. Experiments and the simulation indicate that a Schottky drain is desirable for power electronic applications.  相似文献   

16.
徐华  兰林锋  李民  罗东向  肖鹏  林振国  宁洪龙  彭俊彪 《物理学报》2014,63(3):38501-038501
本文采用钼-铝-钼(Mo/Al/Mo)叠层结构作为源漏电极,制备氧化铟锌(IZO)薄膜晶体管(TFT).研究了Mo/Al/Mo源漏电极中与IZO接触的Mo层溅射功率对TFT器件性能的影响.随着Mo层溅射功率的增加,器件开启电压(Von)负向移动,器件均匀性下降.通过X射线光电子能谱(XPS)深度剖析发现IZO/Mo界面有明显的扩散;当Mo层溅射功率减小时,扩散得到了抑制.制备的器件处于常关状态(开启电压为0.5 V,增强模式),不仅迁移率高(~13 cm2·V-1·s-1),而且器件半导体特性均匀.  相似文献   

17.
赵胜雷  陈伟伟  岳童  王毅  罗俊  毛维  马晓华  郝跃 《中国物理 B》2013,22(11):117307-117307
In this paper,the influence of a drain field plate(FP)on the forward blocking characteristics of an AlGaN/GaN high electron mobility transistor(HEMT)is investigated.The HEMT with only a gate FP is optimized,and breakdown voltage VBRis saturated at 1085 V for gate–drain spacing LGD≥8μm.On the basis of the HEMT with a gate FP,a drain FP is added with LGD=10μm.For the length of the drain FP LDF≤2μm,VBRis almost kept at 1085 V,showing no degradation.When LDFexceeds 2μm,VBRdecreases obviously as LDFincreases.Moreover,the larger the LDF,the larger the decrease of VBR.It is concluded that the distance between the gate edge and the drain FP edge should be larger than a certain value to prevent the drain FP from affecting the forward blocking voltage and the value should be equal to the LGDat which VBR begins to saturate in the first structure.The electric field and potential distribution are simulated and analyzed to account for the decrease of VBR.  相似文献   

18.
In this paper, we present the combination of drain field plate(FP) and Schottky drain to improve the reverse blocking capability, and investigate the reverse blocking enhancement of drain FP in Schottky-drain AlGaN/GaN high-electron mobility transistors(HEMTs). Drain FP and gate FP were employed in a two-dimensional simulation to improve the reverse blocking voltage(VRB) and the forward blocking voltage(VFB). The drain-FP length, the gate-FP length and the passivation layer thickness were optimized. VRBand VFBwere improved from-67 V and 134 V to-653 V and 868 V respectively after optimization. Simulation results suggest that the combination of drain FP and Schottky drain can enhance the reverse blocking capability significantly.  相似文献   

19.
Based on the Floquet theory and Keldysh's nonequilibrium Green's function methods, we study the electron transport through the HgTe/CdTe quantum wells (QWs) irradiated by a monochromatic laser field. We find that when the laser field is applied, the edge states are split into a series of sidebands. When the Fermi level lies among these sidebands, the quantized plateau of the conductance is destroyed. Instead, the conductance versus the radiation frequency exhibits the successive oscillation peaks corresponding to the resonant tunneling through the sidebands of the edge states. The resonant interaction between the quasiparticles and the radiation field opens the gaps in the crossing region of the sidebands, which can be tuned by the radiation strength and frequency. This leads to the shift of the oscillation peaks in the conductance. We also show that the amplitudes of the oscillation peaks in the conductance are governed by the radiation strength and frequency.  相似文献   

20.
Considering the strong built-in electric field (BEF), dielectric-constant mismatch and 3D confinement of the electron and hole, the exciton states and interband optical transitions in [0 0 0 1]-oriented Ga-rich wurtzite InxGa1−xN/GaN strained quantum dot (QD) nanowire heterostructures are investigated theoretically using a variational approach under the effective mass approximation. We find that the strong BEF gives rise to an obvious reduction of the effective band gap of QDs and leads to a remarkable electron-hole spatial separation. The BEF, QD height and radius, and dielectric mismatch effects have a significant influence on exciton binding energy, electron interband optical transitions, and the radiative decay time. Our calculations show that the radiative decay time of the redshifted transitions is large and increases almost exponentially when the QD height increases, which is in good agreement with the previous experimental and theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号