首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 976 毫秒
1.
Owing to a very sharp nonlinearity in the quasiparticle currentvoltage characteristic, which fortuitously occurs on the scale of a few millivolts rather than a few volts as with semiconductor devices, superconductor/insulator/superconductor (SIS) tunnel junctions are the most sensitive detectors for heterodyne mixing at millimeter and submillimeter wavelengths. They can also provide sources of coherent local oscillator power at very high frequencies; more broadly, they have a number of interesting applications as fast, low-power logic elements and as detectors at optical wavelengths. For submillimeterwave mixers, in many ways the most demanding of these applications, the Nb/Al-oxide/Nb material system has emerged as the system of choice to frequencies of ∼ 700 GHz and beyond. Production of SIS devices requires careful attention to a number of critical microfabrication issues, and I describe here some of the insights gained from developing a process for high-quality niobium trilayers that successfully yielded small-area junctions with unusually low sub-gap leakage current.  相似文献   

2.
Femtosecond‐laser micromachining has been developed as one of the most efficient techniques for direct three‐dimensional microfabrication of transparent optical materials. In integrated photonics, by using direct writing of femtosecond/ultrafast laser pulses, optical waveguides can be produced in a wide variety of optical materials. With diverse parameters, the formed waveguides may possess different configurations. The paper by F. Chen and J.R. Vázquez de Aldana (pp. 251–275) focuses on crystalline dielectric materials, and is a review of the state‐of‐the‐art in fabrication, characterization and applications of femtosecond‐laser micromachined waveguiding structures in optical crystals and ceramics.  相似文献   

3.
4.
Amplified emission spectroscopy is promising for applications of qualitative and quantitative sensing of elements and their states. This technique has the characteristics of a narrow spectral line, high spectral resolution, and high signal‐to‐noise ratio. Recently, this technology has advanced tremendously with progress in excitation methods, that is, resonance multiphoton absorption and filamentation with ultrafast lasers. The mechanism, conditions, excitation, signal processing, and applications of amplified emission spectroscopy are reviewed herein. In particular, the different formation patterns of the amplified emission spectra produced by an ultrafast laser are analyzed in detail. In addition, a brief introduction is given to the existing applications of amplified emission. Finally, both a conclusion and a perspective of the future for amplified emission are presented.  相似文献   

5.
作为空穴阻挡材料,BCP通常被用在蓝光以及白光有机电致发光器件中,其空穴阻挡能力随着其厚度的增加而增强;另一方面,在电场作用下,空穴也能隧穿厚度较薄的BCP层。为了深入了解BCP在多层有机电致发光器件中的作用,文章研究了不同电压下BCP层厚度对器件ITO/NPB/BCP/Alq3∶DCJTB/Alq3/Al电致发光光谱的影响。实验发现,较薄的BCP层可以部分地阻挡空穴并能调节能量在不同发光层之间的传递,从而容易获得白光器件;但该种结构器件的电致发光光谱随着电压的变化变动较大。当BCP层足够厚时,器件的电致发光光谱也变得相对较稳定; 当BCP的厚度为15 nm以上时,空穴就很难再隧穿过去。文章还讨论了不同电压下多层器件的电致发光光谱发生变化的原因。  相似文献   

6.
The emission dynamics in GaAs/AlGaAs coupled ring-disk (CRD) quantum structures fabricated on silicon substrates is presented. The CRD structures are self-assembled via droplet epitaxy, a growth technique which, due to its low thermal budget, is compatible with the monolithic integration of III-V devices on Si based electronic circuits. Continuous wave, time resolved photoluminescence and theoretical calculations in the effective mass approximations are presented for the assessment of the electronic and carrier properties of the CRDs. The CRDs show a fast carrier dynamics which is expected to be suitable for ultrafast optical switching applications integrated on silicon.  相似文献   

7.
随着原子激光冷却、囚禁与操控技术以及微米、纳米微电子制作技术的快速发展与不断完善,一个新兴的原子光学分支学科一“集成原子光学及其原子芯片”正在形成。本文重点介绍了集成原子光学及其原子芯片的集成方案、实验结果及其最新进展:包括表面微结构原子光学元器件、微磁结构集成原子光学、微光结构集成原子光学和微磁光结构集成原子光学及其原子芯片的设计方案与微制作技术及其最新实验结果。最后,简单总结了原子芯片的设计原则,讨论了芯片设计与研制中尚待解决的问题,并就集成原子光学的潜在应用及其未来发展作一简单展望。  相似文献   

8.
Wavelength demultiplexing waveguide couplers have important applications in integrated nanophotonic devices. Two of the most important indicators of the quality of a wavelength demultiplexing coupler are coupling efficiency and splitting ratio. In this study, we utilize two asymmetric high-index dielectric nanoantennas directly positioned on top of a silicon-on insulator waveguide to realize a compact wavelength demultiplexing coupler in a communication band, which is based on the interference of the waveguide modes coupled by the two nanoantennas. We add a Au substrate for further increasing the coupling efficiency. This has constructive and destructive influences on the antenna's in-coupling efficiency owing to the Fabry-Perot(FP) resonance in the SiO_2 layer. Therefore, we can realize a wavelength demultiplexing coupler with compact size and high coupling efficiency. This coupler has widespread applications in the areas of wavelength filters,on-chip signal processing, and integrated nanophotonic circuits.  相似文献   

9.
Ye LIU&#  &#  &#  &#  Fei QIN&#  &#  &#  &#  Fei ZHOU&#  &#  &#  &#  Qing&#  bo MENG&#  &#  &#  &#  &#  Dao&#  zhong ZHANG &#  &#  &#  &#  &#  Zhi&#  yuanLI &#  &#  &#  &#  &# 《Frontiers of Physics》2010,5(3):220
Nonlinear photonic crystals made from polystyrene materials that have Kerr nonlinearity can exhibit ultrafast optical switching when the samples are pumped by ultrashort optical pulses with high intensity due to the change of the refractive index of polystyrene and subsequent shift of the band gap edge or defect state resonant frequency. Polystyrene has a large Kerr nonlinear susceptibility and almost instantaneous response to pump light, making it suitable for the realization of ultrafast optical switching with a response time as short as a few femtoseconds. In this paper, we review our experimental progress on the continual improvement of all-optical switching speed in two-dimensional and three-dimensional polystyrene nonlinear photonic crystals in the past years. Several relevant issues are discussed and analyzed, including different mechanisms for all-optical switching, preparation of nonlinear photonic crystal samples by means of microfabrication and self-assembly techniques, characterization of optical switching performance by means of femtosecond pump-probe technique, and different ways to lower the pump power of optical switching to facilitate practical applications in optical information processing. Finally, a brief summary and a perspective of future work are provided.  相似文献   

10.
Nonlinear photonic crystals made from polystyrene materials that have Kerr nonlinearity can exhibit ultrafast optical switching when the samples are pumped by ultrashort optical pulses with high intensity due to the change of the refractive index of polystyrene and subsequent shift of the band gap edge or defect state resonant frequency. Polystyrene has a large Kerr nonlinear susceptibility and almost instantaneous response to pump light, making it suitable for the realization of ultrafast optical switching with a response time as short as a few femtoseconds. In this paper, we review our experimental progress on the continual improvement of all-optical switching speed in two-dimensional and three-dimensional polystyrene nonlinear photonic crystals in the past years. Several relevant issues are discussed and analyzed, including different mechanisms for all-optical switching, preparation of nonlinear photonic crystal samples by means of microfabrication and self-assembly techniques, characterization of optical switching performance by means of femtosecond pump-probe technique, and different ways to lower the pump power of optical switching to facilitate practical applications in optical information processing. Finally, a brief summary and a perspective of future work are provided.  相似文献   

11.
韦庞  李康  冯硝  欧云波  张立果  王立莉  何珂  马旭村  薛其坤 《物理学报》2014,63(2):27303-027303
在利用光刻将拓扑绝缘体外延薄膜加工成微米尺寸结构的过程中,所用的各种化学物质会导致薄膜质量的下降.在实验中,通过在钛酸锶衬底上预先光刻出Hall bar形状的凸平台并以此为模板进行拓扑绝缘体(Bi x Sb1-x)2Te3薄膜的分子束外延生长,直接获得了薄膜的Hall bar微器件,从而避免了光刻过程对材料质量的影响.原子力显微镜和输运测量结果均显示该微器件保持了(Bi x Sb1-x)2Te3外延薄膜原有的性质.这种新的微器件制备方法有助于在拓扑绝缘体中实现各种新奇的量子效应,并可推广于其他外延生长的低维系统.  相似文献   

12.
Since LiOsO_3 was discovered, obtaining easy-accessible polar metals for research and applications has been challenging. In this paper, we present a multilayer design strategy, which is configured as ferroelectric layer/carrier reservoir layer/isolation layer/substrate, for obtaining polar metals by electrostatically doping a strained ferroelectric material in a more effective way. In the proposed configuration, both 1 unit-cell thick BaTiO_3 and PbTiO_3 exhibited considerable Ti off-centering with various strains,which should extend the applicability of ferroelectric-based polar metals in ultra-thin devices. Moreover, engineered by the compressive strain and the BaTiO_3 thickness, the design strategy effectively achieved polar metallicity and dimensionalitytunable electronic states associated with the modulation of highly anisotropic properties such as electrical and electronic thermal conductivity, which may be helpful for designing ultra-thin, ultrafast, and low-power switch devices.  相似文献   

13.
A recent theoretical estimation indicated that the NM/FI/FI/NM double spin-filter junction (DSFJ, here the NM and FI represent the nonmagnetic electrode and the ferromagnetic insulator (semiconductor) spacer, respectively) could have very high tunneling magnetoresistance (TMR) at zero bias. To meet the requirement in research and application of the magnetoresistance devices, we have calculated the dependences of tunneling magnetoresistance of DSFJ on the bias (voltage), the thicknesses of ferromagnetic insulators (semiconductors) and the average barrier height. Our results show that except its very high value, the TMR of DSFJ does not decrease monotonously and rapidly with rising bias, but increase slowly at first and decrease then after having reached a maximum value. This feature is in distinct contrast to the ordinary magnetic tunnel junction FM/NI/FM (FM and NI denote the ferromagnetic electrode and the nonmagnetic insulator (semiconductor) spacer, respectively), and is of benefit to the use of DSFJ as a magnetoresistance device.  相似文献   

14.
Tunnel junction based molecular devices, which utilize the two metal electrodes of a metal–insulator–metal tunnel junction as the two electrical leads to connect with molecular channels, can overcome the long standing fabrication challenges for developing futuristic molecular devices. However, producing an ultrathin insulator is the most challenging step in this tunnel junction based molecular device fabrication. A simplified molecular device approach was developed by avoiding the need of depositing a new material on the bottom electrode for growing ultrathin insulator. This paper discusses the new approach for insulator growth by one-step oxidation of a tantalum (Ta) bottom electrode, in the pholithographically defined region, i.e., ultrathin tantalum oxide (TaO x ) insulator was grown by oxidizing bottom Ta metal electrode itself. Organometallic molecular clusters (OMCs) were bridged across 1–3 nm TaO x along the perimeter of a tunnel junction to establish the highly efficient molecular conduction channels. OMC transformed the asymmetric transport profile of TaO x based tunnel junction into symmetric one. A TaO x based tunnel junction with the top ferromagnetic (NiFe) electrode exhibited the transient current suppression by several orders. Further studies by independent research groups will be needed to strengthen the current suppression phenomenon, and to realize the full potential of TaO x based molecular devices.  相似文献   

15.
Precisely engineered tunnel junctions exhibit a long sought effect that occurs when the energy of the electron is comparable to the potential energy of the tunneling barrier. The resistance of metal-insulator-metal tunnel junctions oscillates with an applied voltage when electrons that tunnel directly into the barrier's conduction band interfere upon reflection at the classical turning points: the insulator-metal interface and the dynamic point where the incident electron energy equals the potential barrier inside the insulator. A model of tunneling between free electron bands using the exact solution of the Schr?dinger equation for a trapezoidal tunnel barrier qualitatively agrees with experiment.  相似文献   

16.
Addressable field emitter arrays (FEAs) have important applications in vacuum electronic devices. However, it is important to integrate nanowire emitters into a gated structure without influencing the device structure and maintain the excellent field emission properties of nanowire emitters in the FEAs after the fabrication process. In this study, gate-structure ZnO nanowire FEAs were fabricated by a microfabrication process. The structure combines a planar gate and an under-gate, which is compatible with the preparation of ZnO nanowire emitters. The effect of electrode materials on the field emission properties of ZnO nanowires was studied using a diode structure, and it was found that ZnO nanowire pads on indium-tin-oxide (ITO) electrode showed better field emission performance compared with chromium (Cr) electrode. In addition, effective emission current modulation by the gate voltage was achieved and the addressing capability was demonstrated by integrating the ZnO nanowire FEAs in a vacuum-encapsulated field emission display. The reported technique could be a promising route to achieve large area addressable FEAs.  相似文献   

17.
We report a simple triggering mechanism that greatly enhances and stabilizes supercontinuum generation by using an extremely weak cw light (~200,000 times weaker than the pump light). Such an active manipulation scheme can be enabled by a wide range of input conditions and circumvents complex techniques such as precise time delay tuning and dedicated feedback control. It thus offers a handy and versatile approach to control and optimize supercontinuum generation, expanding its range of applications, including ultrafast all-optical signal processing, spectroscopy, and imaging. The utility of the present technique for improving signal integrity in chirped pump optical parametric amplification is also demonstrated.  相似文献   

18.
飞秒激光双光子微细加工技术及研究现状   总被引:4,自引:0,他引:4  
飞秒激光双光子微细加工技术以其特有的高精度三维微加工优势,成为微型机械加工领域新的发展方向之一。介绍了飞秒激光双光子微细加工技术的原理和应用的现状。结合目前已有的微细加工技术,对双光子微细加工技术的特点加以评述。简要报道了利用飞秒激光双光子微细加工技术的一些研究进展。探讨了飞秒激光双光子微细加工技术今后的发展方向及其存在的基本问题。  相似文献   

19.
制备了Cu-Al2O3-MgF2-Au双势垒隧道发光结,分析了结加上一定偏压后的电子隧穿过程.指出由于构成隧道结的绝缘栅薄膜的厚度及禁带宽度的不同而导致双势垒中能级产生分裂,使电子通过栅区时产生共振隧穿现象.根据这一现象,并结合结的I-V特性,对结的发光性能进行了讨论.这种结构的结与普通单势垒MIM结相比,其发光效率(10-6—10-5)提高了近一个数量级,且发光光谱的波长范围及谱峰均向短波长方向 关键词:  相似文献   

20.
A formula for the local tunnel transparency of an I (insulator) layer, simulated by a potential barrier with a quantum jumper (a quantum resonance percolation trajectory, or QRPT), is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号