首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
弹性力学中的一种非协调数值流形方法   总被引:1,自引:0,他引:1  
魏高峰  冯伟 《力学学报》2006,38(1):79-88
通过引入数学和物理双重网格,将插值域与 积分域分别定义在不同的覆盖上,即在数学网格上进行插值函数的构造,物理网格上完成 系统能量泛函积分运算,最后通过覆盖权函数将二者联结在一起. 它的优点是单元网格划 分随意,不受复杂边界形状和二相材料界面的限制,单元可以是任意形状,是较之于有限 元方法更一般的数值模拟方法. 在4节点四边形数值流形方法中,由于单元总体位移函数 包含的完全多项式不完全,使得计算精度不够精确,为此,在单元总体位移函数上附 加非协调位移基本项,使之趋于完全,提出了弹性力学问题的一种改进的数值流形 方法------非协调数值流形方法. 通过内部自由度静力凝聚处理,导出了消除内参后的单元应变矩阵 和单元刚度矩阵,使得在不增加广义节点自由度的前提下,大大提高了数值流形方法的计 算精度和计算效率. 同时对非协调项进行了显式处理,可以对工程实践起到更切实的帮助. 数值试验表明,它们能够保证收敛,有较高的精度,对畸变不敏感,从而证明了该方法的 可行性.  相似文献   

2.
针对无网格Galerkin法在三维复杂几何形状的结构分析中存在的刚度矩阵的稀疏存储实现难、六面体背景网格适应性差等问题,本文采用逐节点对法组装刚度矩阵,利用CSR格式存储刚度矩阵,提出了一种基于四面体背景积分的改进的三维无网格Galerkin法。通过采用罚函数法施加对称约束和给定位移值约束,并推导出了施加这两种位移约束的统一格式。利用所提算法完成了三维悬臂梁的计算,所得结果与其理论解相吻合;完成了轴流式风机轮毂的结构分析,得到的位移与应力分布结果与其有限元解相吻合。这表明本文所提方法能满足工程应用中的计算要求,并适用于具有复杂形状的几何模型分析。  相似文献   

3.
非均质材料动力分析的广义多尺度有限元法   总被引:1,自引:0,他引:1  
自然界和工程中的大部分材料都具有多尺度特征,当考察尺度小到一定程度后,都将表现出非均质性.针对非均质材料的动力问题,提出了一种广义多尺度有限元方法,其基本思想是利用静态凝聚法以及罚函数法构造能够反映单元内部材料非均质特性的多尺度位移基函数.与传统扩展多尺度有限元法中的基函数构造方式不同,广义多尺度有限元法的基函数无需通过在子网格域上多次求解椭圆问题得到,而可直接通过矩阵运算获得.其主要步骤如下:利用数值基函数将一个非均质单胞等效为一个宏观单元,进而形成整个结构的等效刚度矩阵,并得到宏观网格的节点位移,最后再次利用数值基函数得到微观尺度上的位移结果.该广义多尺度有限元法是扩展多尺度有限元法的一种新的拓展,可模拟具有更加复杂几何的非均质单胞的力学行为.通过数值算例,模拟了非均质材料的静力问题、广义特征值问题以及瞬态响应问题,计算结果表明:在边界条件一样的情况下,广义多尺度有限元法的计算结果与传统有限元的计算结果保持高度一致.与传统有限元相比,该方法在保证计算精度的同时极大地提高了计算效率.研究结果表明,广义多尺度有限元法能够很好地模拟非均质单胞的力学行为,具有良好的工程应用潜力.   相似文献   

4.
基于有限元计算网格,扩展有限单元法通过建立特殊的广义节点插值形式来描述含裂缝体的不连续位移场,避免了有限元法模拟裂缝时需要的网格重划分。进而,本文从虚功原理出发,在有限元法框架内完整地推导了能模拟宏观裂纹力学场的扩展有限元法实现公式,在理论上更全面地考虑了内部裂纹面上分布外载荷及缝内粘连材料刚度的影响,并提出了构建统一的扩展有限单元刚度阵形成模式,保证了与传统有限单元方式的协调一致。文中对方法的实现过程也做了详细阐述,给出了通用的计算公式,确保了算法的可行性。  相似文献   

5.
蜂窝梁钢框架结构因梁截面沿长度周期性变化,不能直接采用普通钢框架结构矩阵位移法计算框架内力和位移.本文基于等效刚度法推导了矩形孔蜂窝梁的等效抗弯刚度、抗剪刚度和轴向刚度,建立了矩形孔蜂窝梁的单元刚度方程,提出了矩形孔蜂窝梁钢框架内力和位移计算方法.算例理论计算结果与有限元分析结果表明,两种方法计算结果非常接近.本文提出的等效刚度法概念清晰,准确性好,适用于计算蜂窝梁钢框架结构的内力和位移.  相似文献   

6.
将多尺度方法的思想与超收敛计算的解析公式结合起来,提出了改进有限元位移模式的算法。利用超收敛计算的解析公式,将高阶有限元解的位移模式用常规有限元解的位移模式表示。用常规有限元解的位移模式与高阶有限元解的位移模式之和构造新的位移模式,采用积分形式推导了单元刚度矩阵。该算法在前处理和后处理两个阶段都使用超收敛计算公式,在常规试函数的基础上,增加了高阶试函数,使得单元内平衡方程的残差减少,从而达到提高精度的目标。对于线性单元,本文结点和单元的位移、导数都达到了h4阶的超收敛精度。  相似文献   

7.
提出了基于改进位移模式的一维C1有限元超收敛算法。利用单元内部需满足平衡方程的条件,推导了超收敛计算解析公式的显式,即将高阶有限元解的位移模式用常规有限元解的位移模式表示。用常规有限元解的位移模式与高阶有限元解的位移模式之和构造新的位移模式。采用积分形式推导了单元刚度矩阵。该算法在前处理阶段使用了超收敛计算公式,在常规试函数的基础上,增加了高阶试函数,使得单元内平衡方程的残差减少,从而达到提高精度的目标。对于Hermite单元,本文的结点和单元的位移、导数都达到了h4阶的超收敛精度。  相似文献   

8.
固定形状的单元位移插值函数不能合理地近似变截面梁内部的位移变化,从而影响了传统梁单元用于计算变截面梁的精度.采用直接基于单元平衡的思想给出了计算变截面梁反应的有限元方法,解决了单元位移插值函数局限性所带来的问题.导出了变截面梁单元的单元刚度矩阵、单元等效节点荷载和单元一致质量矩阵.在此基础上,利用编制的程序进行了算例验证与分析.算例验证了本文理论的正确性,表明本文方法具有很高的计算精度.  相似文献   

9.
热传导问题的非协调数值流形方法   总被引:2,自引:0,他引:2  
魏高峰  冯伟 《力学季刊》2005,26(3):451-454
数值流形方法通过引入数学与物理双重网格,将插值域与积分域分别定义在两个不同的覆盖上,其优点是网格划分随意,不受复杂边界形状和材料界面的限制,是较之于有限元方法更一般化的数值模拟方法。在计算精度方面,数值流形方法远远高于有限元法。但它的精度还是不够理想。为此本文在单元总体位移场上附加非协调位移基本项,使单元位移函数趋于完全,构造了非协调流形单元来改善流形单元的计算精度和计算效率,并将其应用于热传导问题,推导了势问题的非协调数值流形方法。  相似文献   

10.
多分辨率拓扑优化(multi-resolution topology optimization, MTOP)方法将有限元网格和密度网格解耦, 采用较粗的网格(超单元)进行有限元分析, 从而大大降低了拓扑优化过程中的结构分析成本. 但MTOP方法每次迭代都需要根据超单元内的平均密度计算有限元单刚, 不仅精度不够且在过滤半径较小的情况容易出现棋盘格现象和QR模式. 为解决相应问题, 本文将超单元视为子结构, 通过静态凝聚得到超单元刚度阵, 并进一步根据拓扑优化过程中子结构的密度分布特征组建了其模板库, 从而省去了超单元单刚的重复计算, 显著提高了MTOP方法的分析精度, 有效抑制了数值不稳定现象.   相似文献   

11.
陈雅琴  张宏光  党发宁 《应用力学学报》2012,29(4):353-360,481,482
为拓展小波理论在结构工程中的应用,提高结构计算精度,提出了以Daubechies条件小波Ritz法为基础的Daubechies条件小波有限元法。该法结合广义变分原理和拉格朗日乘子法构造修正泛函,根据修正泛函的驻值条件得到全域法求解方程矩阵。根据构件的边界条件,按左右边界对求解矩阵进行相应拆分,构建条件小波单元刚度矩阵,并依据公共节点位移相等原则形成总体刚度矩阵,由此解得各单元的小波基待定系数,即可进一步求解位移场函数、内力分布函数及荷载集度函数。以工程中常见的弹性拉压杆及平面弯曲梁为例,详细阐述了该方法的构造过程。并通过典型算例将Daubechies条件小波有限元法计算值与理论解进行了对比,结果表明:在弹性拉压杆算例中,位移、应力、载荷集度的相对误差均在1.22×10-3%以内;在平面弯曲梁算例中,挠度、弯矩、载荷集度的相对误差均在8.91×10-2%以内。  相似文献   

12.
用扩展有限元法XFEM(Extended Finite Element Method)解决夹杂问题时,夹杂与基质的界面把单元分成若干部分.求单元刚度矩阵时,需要分别在这各个部分求积分.找到便于程序编制的描述各积分区域几何形状的方法是亟待解决的问题.本文把各积分区域的形成过程看成是圆对四边形的多次切割.考虑切剩区域与圆的关系时,把不完整的边仍看作完整的边,把切剩区域看成是四边形或是切去一两条边的四边形.采用排列组合的方法,把它们与圆的所有位置关系列了出来.  相似文献   

13.
We present a systematic investigation of several discretization approaches for transient elastodynamic wave propagation problems. This comparison includes a Finite Difference, a Finite Volume, a Finite Element, a Spectral Element and the Scaled Boundary Finite Element Method. Numerical examples are given for simple geometries with normalized parameters, for heterogeneous materials as well as for structures with arbitrarily shaped material interfaces. General conclusions regarding the accuracy of the methods are presented. Based on the essential numerical examples an expansion of the results to a wide range of problems and thus to numerous fields of application is possible.  相似文献   

14.
In this paper, we present a detailed derivation of the numerical method, Immersed Finite Element Method (IFEM), for the solution of fluid-structure interaction problems. This method is developed based on the Immersed Boundary (IB) method that was initiated by Peskin, with additional capabilities in handling nonuniform and independent meshes and applying arbitrary boundary conditions on both fluid and solid domains. A higher order interpolation function is adopted from one of the mesh-free methods, the Reproducing Kernel Particle Method (RKPM), which relieves the uniformity constraint of fluid meshes. Two 2-D example problems are presented to illustrate the capabilities of the algorithm. The accuracy in the numerical analysis demonstrates that the IFEM algorithm is a reliable and robust numerical approach to solve fluid and deformable solid interactions.  相似文献   

15.
膜-基复合材料界面剪应力分析的影响系数法   总被引:1,自引:0,他引:1  
提出了一种计算膜 基复合材料界面剪应力的新方法。将薄膜、基体分别作为二维和三维问题进行有限元计算 ,利用影响系数 ,以剪应力为未知量 ,求出同一点处薄膜、基体的位移。通过薄膜、基体在界面上位移相等的条件建立线性方程组 ,联立求解 ,计算出界面剪应力。结果表明 ,本文提出的方法思路清晰 ,易于实现 ,精度令人满意 ,为膜 基复合材料结构强度分析提供了一种新的途径  相似文献   

16.
针对平面孔洞问题提出了一种新的数值模拟方法。本文通过水平集方法引入孔洞边界、力边界和位移边界水平集函数,利用边界水平集函数来构造边界试探项,将试探空间表示为二元幂级数与边界试探项的线性组合;同时提出一种基于水平集方法的位移边界条件施加方法,利用位移边界水平集函数来构造满足位移边界条件的近似位移场,并给出了相应的刚度矩阵和载荷矩阵表达式。与FEM、XFEM、无网格法等方法相比,该方法无需将求解域离散,具有较低的计算成本、特性良好的刚度矩阵和较为广泛的适用性。数值算例验证了该方法的有效性。  相似文献   

17.
Many physical phenomena in science and engineering can be modeled by partial differential equations (PDEs) and solved by means of the Finite Element Method (FEM). Such a method uses as computational spatial support a mesh of the domain where the equations are formulated. Mesh quality is a key-point for the accuracy of numerical simulation. In this paper, we are concerned with the generation of quality (or regular) meshes. This question is a particular occurrence of a more general mesh generation issue which aims to complete meshes conforming to a pre-specified size map (such meshes being referred to as `unit' meshes). We propose a method that makes this mesh construction possible. It is based on a Delaunay advancing-front combined method: the field points are defined using an advancing-front method and are connected using a generalized Delaunay type method. Some optimization methods are also discussed.  相似文献   

18.
In this paper a new version of the Modified Quadrature Element Method (MQEM) is proposed. Like MQEM, the proposed method overcomes the drawback of the distance δ of the Quadrature Element Method (QEM) without introducing further degrees of freedom at the ends of the element as in the Differential Quadrature Element Method (DQEM), but it makes the computational cost of the stiffness matrix (and the mass matrix) lighter and uses a general procedure to generate the sampling points distribution. The method here presented has been applied to compute the fundamental frequencies of some structures.  相似文献   

19.
基于辛弹性力学解析本征函数的有限元应力磨平方法   总被引:1,自引:0,他引:1  
在实际工程结构的结构强度与优化等力学数值分析中,应力计算结果的精度是非常重要的。有限元法是得到最广泛应用的一类数值方法,并形成了众多通用的有限元程序系统。这些程序系统采用的几乎都是基于最小总势能的位移法,虽然其分析给出的有限元位移场具有较高的精度,但所得到的有限元应力场的精度较位移场大大降低。基于极坐标辛对偶体系所提供的平面弹性力学的解析辛本征展开解,并借用有限元程序系统所得到的节点位移,本文提出了一个应力分析的改进方法。数值结果表明,本方法给出的应力分析精度得到大幅提高,并具有良好的数值稳定性,可用于有限元程序系统的后处理,以提高应力尤其是关键区域应力的分析精度。  相似文献   

20.
In the recently developed Nearest-Nodes Finite Element Method (NN-FEM), elements are mainly used for numerical integration; while shape functions are constructed in a similar way as in meshless methods. Based on this strategy, NN-FEM inherits major merits from both the classical Finite Element Method and meshless methods. One of them is that NN-FEM is nearly not affected by element distortion. So NN-FEM is more efficient than the classical FEM on dealing with large deformation problems. Nevertheless, NN-FEM still has a requirement on finite element meshes, that is, elements in a mesh are required not to overlap or penetrate to each other, to avoid difficulty in numerical integration. To eliminate overlapped elements, NN-FEM is supplemented with an algorithm for updating element connectivity. With this supplement, NN-FEM is able to deal with extremely large deformation. In updating element connectivity, element nodes are kept not changed and all information associated with nodes are not touched. Therefore, there is no need to transfer solution data, and error introduced by solution transfer is avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号