首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The resistive switching characteristics of Au/ZnTe/ITO structure with polycrystalline ZnTe film as resistive switching layer is investigated. Macroscopically, 100 bipolar switching cycles under the direct current (dc) voltages were carried out and the conduction states can retain for several hours. Microscopically, reading and writing operations can be achieved on ZnTe film with Au top electrode replaced by conductive Atomic Force Microscopy (c-AFM) tip. The I–V characteristic in low resistance state (LRS) is linear in the whole range of voltage. The I–V characteristic in high resistance state (HRS) is linear in the low voltage while it obeys Schottky emission in the high voltage, and Schottky barrier height is symmetric in the positive and negative voltage. During linear I–V characteristic voltage range, the electrons transport between adjacent point defects via Mott variable range hopping. The higher hopping distance and higher activation energy in HRS contribute to the higher resistance value in HRS compared with LRS. Impedance spectroscopy in HRS and LRS both behave as a semicircle, which accords with the semiconductor-like characteristic of conductive point defects. Photoluminescence (PL) spectroscopy indicates the decisive role of deep level defects in conduction. This study confirms the intrinsic resistive switching characteristic of ZnTe film and provides a new choice for intrinsic non-oxides material in nonvolatile memory application.  相似文献   

2.
Marceau V  April A  Piché M 《Optics letters》2012,37(13):2442-2444
Exact closed-form solutions to Maxwell's equations are used to investigate the acceleration of electrons in vacuum driven by ultrashort and nonparaxial radially polarized laser pulses. We show that the threshold power above which significant acceleration takes place is greatly reduced by using a tighter focus. Moreover, electrons accelerated by tightly focused single-cycle laser pulses may reach around 80% of the theoretical energy gain limit, about twice the value previously reported with few-cycle paraxial pulses. Our results demonstrate that the direct acceleration of electrons in vacuum is well within reach of current laser technology.  相似文献   

3.
We theoretically studied the possibility of frequency multiplication using propagating dipole domains which are induced in a semiconductor superlattice by microwave radiation. We have investigated the dynamics of electrons in a superlattice submitted to both a static voltage and a microwave field by performing a simulation based on a drift-diffusion model and incorporating current-limiting boundary conditions. The motion of electrons in the superlattice was governed by an Esaki–Tsu drift velocity field characteristic with a negative differential mobility above a critical electrical field. The simulation delivered, for a static voltage larger than a critical voltage, the periodic formation and annihilation of propagating dipole domains and, as a consequence, a reduction of the direct current through the superlattice. Our simulation showed that an additional microwave field can periodically induce and subsequently quench domains giving rise to a strongly anharmonic current. The anharmonicity of the current is the origin for the generation of higher harmonics of the microwave field. Both the formation and annihilation of a domain can take place within a time of about 1 ps suggesting that the mechanism of domain induction and quenching can be used for generation of radiation up to almost 1 THz.  相似文献   

4.
We predict the current-induced formation of equilibrium phase textures for a multicomponent superconducting order parameter. Using the two-component Ginzburg-Landau and Usadel equations, we show that, for weakly coupled comoving superconducting condensates, the dc current I first causes the breakdown of the phase-locked state at I>I{c1} followed by the formation of intrinsic phase textures well below the depairing current I{d}. These phase textures can manifest themselves in multilayer structures, atomic Bose condensate mixtures in optical lattices, and two-gap superconductors, particularly MgB(2), where they can result in oscillating and resistive switching effects.  相似文献   

5.
We have studied magnetotransport in arrays of niobium filled grooves in an InAs/Al(x)Ga(1-x)Sb heterostructure. The critical field of up to 2.6 T permits one to enter the quantum Hall regime. In the superconducting state, we observe strong magnetoresistance oscillations, whose amplitude exceeds the Shubnikov-de Haas oscillations by a factor of about 2, when normalized to the background. Additionally, we find that above a geometry-dependent magnetic field value the sample in the superconducting state has a higher longitudinal resistance than in the normal state. Both observations can be explained with edge channels populated with electrons and Andreev-reflected holes.  相似文献   

6.
抛物量子点中强耦合磁双极化子内部激发态性质   总被引:2,自引:0,他引:2       下载免费PDF全文
额尔敦朝鲁  白旭芳  韩超 《物理学报》2014,63(2):27501-027501
基于Lee-Low-Pines幺正变换,采用Pekar类型变分法研究了抛物量子点中强耦合磁双极化子的内部激发态性质,当考虑自旋和外磁场影响时,推导出二维量子点中强耦合磁双极化子基态的能量E0,声子平均数ˉN0以及第一激发态的能量E1,声子平均数ˉN1随量子点受限强度ω0,介电常数比η,电子-声子耦合强度α和磁场的回旋共振频率ωC的变化规律.结果表明,磁双极化子的基态能量E0和第一激发态能量E1由两电子的单粒子能量E E,两电子间库仑相互作用能E C,电子自旋与磁场相互作用能E s和电子-声子相互作用能E e-ph四部分组成;单粒子"轨道"运动与磁场相互作用导致了第一激发态能级E1分裂为E(1+1)1,E(1-1)1两条,而电子自旋-磁场相互作用的效应又使基态和第一激发态的各能级均产生了三条"精细结构";ˉN0和ˉN1随ω0,α和ωc的增加而增大,E e-ph的取值总是小于零,其绝对值随α,ω0和ωc的增加而增大;电子-声子相互作用的效应是束缚态磁双极化子形成的有力因素,而限定势和电子之间的库仑排斥能的存在不利于束缚态磁双极化子的形成;能量为E(1-1)1的磁双极化子要比能量为E(1+1)1的磁双极化子更容易且更稳定地处于束缚态.  相似文献   

7.
The electron transport in hydrogenated amorphous carbon films a-C: H with copper nanocluster inclusions has been investigated. The conditions of cluster formation are derived. It is theoretically demonstrated that the energy band structure of the matrix substantially affects the conditions of cluster formation. The electron transport depends on the cluster structure. It is found that, below the percolation threshold (the case of isolated clusters), the transport current is governed by two components depending on the electric field strength. At low field strengths, the current is caused by electrons in the conduction band of amorphous carbon, which are thermally excited from copper clusters. At high field strengths, the transport current is provided by tunneling electrons from the Fermi level of copper clusters to the conduction band of a-C: H. The difference between the mobility edge of the conduction band of amorphous carbon and the Fermi level in copper clusters is determined from the temperature dependence of the resistance and proves to be equal to 0.48 eV. The temperature dependences of the resistance at low field strengths exhibit a fine structure. It is revealed that, above the percolation threshold, the electrical resistance of clusters is considerably contributed by the residual resistance, which is supposedly associated with the electron scattering by cluster surfaces. The temperature effect on the electron transport is examined using the spin-wave scattering technique at a frequency of 4.0 GHz. It is found that the spin wave in the yttrium iron garnet (YIG) film is predominantly affected by thermally excited electrons located above the mobility edge in the conduction band of a-C: H.  相似文献   

8.
By combining the Nernst effect with the law of Ampere, it is shown that if a temperature gradient is present in a plasma, an electric current can be self-sustained due to the transformation of thermal into electromagnetic field energy. We call the configuration in which the above phenomenon occurs the “thermomagnetic battery” and study its steady state operation for an infinite slab geometry assuming that the plasma is fully ionized and the magnetic field is weak (ωeτe ? 1) so that the heat flow is mainly transferred by electrons.  相似文献   

9.
The high pressure electrical transport behavior of pentacene has been investigated by alternating current impedance techniques and direct current resistivity measurement in a diamond anvil cell (DAC). The resistance decreases with increasing pressure below 17.4?GPa, while it increases above 17.4?GPa, which is caused by the transition of pentacene from an ordered state to the disordered state under higher pressure. From the Raman spectra under various pressures, pentacene becomes amorphous above 17.3?GPa, which is consistent with the impedance results. The charge transport operates in the hopping regime with charges jumping between interacting molecules, and the hopping mechanisms are related to the vibration modes. Above 17.4?GPa, the pressure dependence of the relaxation activation energy is 21.7?meV/GPa and pentacene keeps semiconductor characteristics up to 28.3?GPa.  相似文献   

10.
Charging mechanisms of trapped, element-selectively excited free SiO2 nanoparticles by soft x rays are reported. The absolute charge state of the particles is measured and the electron emission probability is derived. Changes in electron emission processes as a function of photon energy and particle charge are obtained from the charging current. This allows us to distinguish contributions from primary photoelectrons, Auger electrons, and secondary electrons. Processes leading to no change in charge state after absorption of x-ray photons are identified. O 1s-excited SiO2 particles of low charge state indicate that the charging current follows the inner-shell absorption. In contrast, highly charged SiO2 nanoparticles are efficiently charged by resonant Auger processes, whereas direct photoemission and normal Auger processes do not contribute to changes in particle charge. These results are discussed in terms of an electrostatic model.  相似文献   

11.
12.
We consider systems of static nuclei and electrons – atoms and molecules – coupled to the quantized radiation field. The interactions between electrons and the soft modes of the quantized electromagnetic field are described by minimal coupling, ppe A (x), where A(x) is the electromagnetic vector potential with an ultraviolet cutoff. If the interactions between the electrons and the quantized radiation field are turned off, the atom or molecule is assumed to have at least one bound state. We prove that, for sufficiently small values of the fine structure constant α, the interacting system has a ground state corresponding to the bottom of its energy spectrum. For an atom, we prove that its excited states above the ground state turn into metastable states whose life-times we estimate. Furthermore the energy spectrum is absolutely continuous, except, perhaps, in a small interval above the ground state energy and around the threshold energies of the atom or molecule. Received: 3 September 1998 / Accepted: 17 March 1999  相似文献   

13.
贾正茂  曾志男  李儒新 《中国物理 B》2017,26(1):13203-013203
Electron localization in the dissociation of the symmetric linear molecular ion H_3~(2+) is investigated. The numerical simulation shows that the electron localization distribution is dependent on the central frequency and peak electric field amplitude of the external ultrashort ultraviolet laser pulse. When the electrons of the ground state are excited onto the 2pσ~2Σ_u~+ by a one-photon process, most electrons of the dissociation states are localized at the protons on both sides symmetrically. Almost no electron is stabilized at the middle proton due to the odd symmetry of the wave function. With the increase of the frequency of the external ultraviolet laser pulse, the electron localization ratio of the middle proton increases, for more electrons of the ground state are excited onto the higher 3pσ~2Σ_u~+ ustate. 50.9% electrons of all the dissociation events can be captured by the middle Coulomb potential well through optimizing the central frequency and peak electric field amplitude of the ultraviolet laser pulse. Besides, a direct current(DC) electric field can be utilized to control the electron motions of the dissociation states after the excitation of an ultraviolet laser pulse, and 68.8% electrons of the dissociation states can be controlled into the middle proton.  相似文献   

14.
We present an introduction to accurate measurements of the weak neutral current in the elastic scattering of longitudinally polarized electrons off hadronic targets, and show how they can provide new and stringent limits on the contribution of strange quarks to the nucleon form factors. Such a contribution is of particular interest for the study of nucleon structure, since strange quarks do not contribute to the valence state and give us a direct insight into the dynamics of quark-antiquark fluctuations. We discuss the latest published results of Happex and G0 experiments as well as the perspectives of high precision measurements of parity violating asymmetries.  相似文献   

15.
The paper deals with the impact of intensive electron attachment on the kinetics of the electrons in the active zone of the stationary band-like beam discharge plasma in SF6 which is an alternative useful plasma medium for “dry etching”. The energy distribution of the electrons in this plasma was obtained by numerically solving the Boltzmann equation which includes apart from elastic collisions, different exciting collision processes, attachment in electron collisions, direct ionization, the ambipolar loss of electrons, Coulomb interaction between electrons and of electrons with ions and the power input to the electrons by the turbulent electric field. In particular, due to the needed fulfilment of the consistent electron particle balance, for an extended region of the turbulence energy density in this plasma a large impact on the electron kinetics of the intensive electron attachment, which is the prevailing electron loss process, was found enforcing independent of the turbulence energy density always a large power input to the electrons, smooth and only slowly decreasing energy distributions even in the energy region of direct ionization.  相似文献   

16.
We report on an experimental investigation of the direct current induced by transmitting a surface acoustic wave (SAW) with frequency 2.7 GHz through a quasi-one-dimensional (1D) channel defined in a GaAs - AlGaAs heterostructure by a split gate, when the SAW wavelength was approximately equal to the channel length. At low SAW power levels the current reveals oscillatory behaviour as a function of the gate voltage with maxima between the plateaux of quantized 1D conductance. At high SAW power levels, an acoustoelectric current was observed at gate voltages beyond pinch-off. In this region the current displays a step-like behaviour as a function of the gate voltage (or of the SAW power) with the magnitude corresponding to the transfer of one electron per SAW cycle. We interpret this as due to trapping of electrons in the moving SAW-induced potential minima with the number of electrons in each minimum being controlled by the electron - electron interactions. As the number of electrons is reduced, the classical Coulomb charging energy becomes the Mott - Hubbard gap between two electrons and finally the system becomes a sliding Mott insulator with one electron in each well.  相似文献   

17.
We report on angle-resolved photoemission (ARPES) experiments on Cu(110) using Mg K(alpha) radiation. The secondary emission (SE) fine structure of electrons below 50 eV is found to map the empty band structure relevant for absolute band mapping in ARPES. The finding is based on a direct comparison of our experiments with very low-energy electron diffraction data [Phys. Rev. Lett. 81, 4943 (1998)]] recently shown to map the unoccupied states representing the photoemission final-state. This suggests a new theoretical approach to the SE process treating the outgoing electron state as the time-reversed diffraction state.  相似文献   

18.
Laser wake field acceleration: the highly non-linear broken-wave regime   总被引:2,自引:0,他引:2  
We use three-dimensional particle-in-cell simulations to study laser wake field acceleration (LWFA) at highly relativistic laser intensities. We observe ultra-short electron bunches emerging from laser wake fields driven above the wave-breaking threshold by few-cycle laser pulses shorter than the plasma wavelength. We find a new regime in which the laser wake takes the shape of a solitary plasma cavity. It traps background electrons continuously and accelerates them. We show that 12-J, 33-fs laser pulses may produce bunches of 3×1010 electrons with energy sharply peaked around 300 MeV. These electrons emerge as low-emittance beams from plasma layers just 700-μm thick. We also address a regime intermediate between direct laser acceleration and LWFA, when the laser-pulse duration is comparable with the plasma period. Received: 12 December 2001 / Published online: 14 March 2002  相似文献   

19.
钼团簇因具有独特的结构、电子和物理化学性质,被期待在未来的纳米科技中扮演重要角色,但是它们的基态结构至今还存在争议. 本研究采用粒子群优化(CALYPSO)方法对Mon (n=2∽18)团簇的晶体结构进行全局域能量最小化搜索,并结合第一性原理方法进一步优化. 计算表明:当4s和4p半核态不作为价态时,Mon (n=2∽18)团簇有明显的二聚体趋势,原子数为偶数的团簇往往是“幻数”团簇,具有较高的稳定性;但是,将4s和4p电子作为价电子后,平均杂化指数HspHsdHpd显著降低,二聚体趋势急剧减弱. 本文报道了Mon(n=11,14,15)团簇的新基态结构,证明了半核态对于Mon团簇是十分重要的.  相似文献   

20.
The change in the low-temperature resistance of iron single-crystal whiskers during magnetization reversal form a single-domain state to a state with a plane-parallel domain structure is studied theoretically. The negative magnetoresistance (~45%) is calculated from the Kubo formula with due regard for the change in the trajectories of conduction electrons in a magnetic induction field of domains. The magnetoresistance thus calculated is of the same order of magnitude as the magnetoresistance obtained in the experiment performed by Isin and Coleman.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号