首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
孔庆平  王翔  周浩  倪群慧 《物理学报》1986,35(8):1091-1094
用透射电子显微镜和扫描电子显微镜研究了一种镍基合金(Nimonic 75型)蠕变-疲劳交互作用的机制。在温度873K,应力幅392MPa下进行的实验表明,蠕变、疲劳和“蠕变叠加疲劳”数据近似满足线性积累损伤规律。扫描电子显微镜断口观察表明,所有试样均发生晶间型断裂。但用透射电子显微镜进行的位错观察指出,在蠕变、疲劳和“蠕变叠加疲劳”试样中,位错组态有明显的差别。这些不同的位错组态,对晶间断裂过程产生了各自不同的影响,因而蠕变损伤与疲劳损伤相互独立,在宏观上表现出线性交互作用的规律。本工作表明,透射电子显微 关键词:  相似文献   

2.
陈希章 《中国物理 B》2017,26(12):126203-126203
Commercially pure polycrystalline aluminum of grade A85, as a test material, is investigated. Using scanning and transmission electron microscopy the aluminum fine structure and fracture surface are analyzed. Fractures are studied in the regime of creep with and without a simultaneous effect of 0.3-T magnetic field. It is found that the application of a magnetic field in a linear stage of creep leads to substructure imperfection increasing. Furthermore, the magnetic field effect on aluminum in the process of creep causes the average scalar density of dislocations to increase and induces the process of dislocation loop formation to strengthen. Fractographic investigation of the fracture surface shows that in the fibrous fracture zone the average size of plastic fracture pits decreases more than twice under creep in the condition of external magnetic field compared with in the conventional experimental condition. In a shear zone, the magnetic field causes the average size of fracture pits to decrease. Experimental data obtained in the research allow us to conclude that the magnetic field effect on aluminum in the process of creep leads to the fracture toughness value of the material decreasing, which will affect the state of defect substructure of the volume and surface layer of the material. The influence of the magnetic field is analyzed on the basis of the magneto-plasticity effect.  相似文献   

3.
Various types of plastic instabilities that emerge in intermittent creep have been studied experimentally for AlMg6 aluminum–magnesium alloy. It has been shown that intermittent creep exhibits threshold dynamics. The deformation step on the creep curve of amplitude is ~1–6% and begins when the rate of the preceding continuous creep attains a certain critical value. In the course of evolution of the step, the strain rate varies in the interval that spans more than two orders of magnitude, and transitions occur between different dynamic regimes of type A and B characterized by different stress drop regularity levels in the force response. Nonlinear aspects of the deformation behavior of the alloy in the intermittent creep conditions are considered.  相似文献   

4.
Experimental properties of a new form of creep dynamics are reported, as manifest in a variety of sandstones, limestone, and concrete. The creep is a recovery behavior, following the sharp drop in elastic modulus induced either by nonlinear acoustic straining or rapid temperature change. The extent of modulus recovery is universally proportional to the logarithm of the time after source discontinuation in all samples studied, over a scaling regime covering at least 10(3) s. Comparison of acoustically and thermally induced creep suggests a single origin based on internal strain, which breaks the symmetry of the inducing source.  相似文献   

5.
Xuan He  Dan Wang  Roderick Melnik 《哲学杂志》2018,98(14):1256-1271
In the current paper, a macroscopic model is proposed to simulate the hysteretic dynamics of ferroelectric ceramics with creep phenomenon incorporated. The creep phenomenon in the hysteretic dynamics is attributed to the rate-dependent characteristic of the polarisation switching processes induced in the materials. A non-convex Helmholtz free energy based on Landau theory is proposed to model the switching dynamics. The governing equation of single-crystal model is formulated by applying the Euler–Lagrange equation. The polycrystalline model is obtained by combining the single crystal dynamics with a density function which is constructed to model the weighted contributions of different grains with different principle axis orientations. In addition, numerical simulations of hysteretic dynamics with creep phenomenon are presented. Comparison of the numerical results and their experimental counterparts is also presented. It is shown that the creep phenomenon is captured precisely, validating the capability of the proposed model in a range of its potential applications.  相似文献   

6.
In this paper an experimental work is done for investigation of high temperature fracture properties of A286 superalloy at 650°C. Stress intensity factor K and parameter C* for this superalloy are determined experimentally. For estimation of these parameters, an instrument is developed for investigation of high temperature fracture properties. For estimation of stress intensity factor, compliance method is used. For this purpose four different compact tension specimens are tested and the parameter K is estimated. Creep tests are done for the selected specimens and parameter C* is determined by semiempirical relationships at 650°C. In these tests it is concluded that the specimens are placed near the plane stress condition. Crack growth behavior of this alloy is also studied. High incubation time (600 h) leads to overaging and therefore this alloy after this time showed very ductile creep properties, and fast creep crack growth was the major result of this overaging phenomenon. Finally the obtained results are compared with well-known nonexperimental methods for determination of these parameters. The obtained results showed that the results are in good agreement with each other.  相似文献   

7.
Discrete sine-Gordon (SG) chains are studied with path-integral molecular dynamics. Chains commensurate with the substrate show the transition from pinning to quantum creep at bead masses slightly larger than in the continuous SG model. Within the creep regime, a field-driven transition from creep to complete depinning is identified. The effects of disorder on the chain's dynamics depend on the potential's roughness exponent H. For example, quantum fluctuations are generally too small to depin the chain if H=1/2, while an H=0 chain can be pinned or unpinned depending on the bead masses. Thermal fluctuations always depin the chain.  相似文献   

8.
The parameters of intergranular fracture of copper during creep under tension at T = 773 K and σ = 12.5 MPa are determined, and the contribution of grain-boundary porosity to the increase in the creep rate at stage III is estimated. The increase in the creep rate is shown to occur due to the pore-induced decrease in the grain boundary area, an increase in the mobile-dislocation density, and the deformation of the material because of the formation of pores and cracks.  相似文献   

9.
Statistics and thermally activated dynamics of crack nucleation and propagation in a two-dimensional heterogeneous material containing quenched randomly distributed defects are studied theoretically. Using the generalized Griffith criterion we derive the equation of motion for the crack tip position accounting for dissipation, thermal noise, and the random forces arising from the defects. We find that aggregations of defects generating long-range interaction forces (e.g., clouds of dislocations) lead to anomalously slow creep of the crack tip or even to its complete arrest. We demonstrate that heterogeneous materials with frozen defects contain a large number of arrested microcracks and that their fracture toughness is enhanced to the experimentally accessible time scales.  相似文献   

10.
The dynamics of a general class of two-dimensional cellular automaton slider-block models of earthquake faults is studied as a function of the failure rules that determine slip and the nature of the failure threshold. Scaling properties of clusters of failed sites imply the existence of a mean-field spinodal line in systems with spatially random failure thresholds, whereas spatially uniform failure thresholds produce behavior reminiscent of self-organized critical behavior. This model can describe several classes of faults, ranging from those that only exhibit creep to those that produce large events.  相似文献   

11.
In this work, the mesoscale mechanics of metals, which links their microscopic physics and macroscopic mechanics, was established. For practical applications, the laws for quantitatively predicting life of cycle and time-dependent fracture behavior such as fatigue, hydrogen embrittlement, and high-temperature creep were derived using particle transport phenomena theories such as dislocation group dynamics, hydrogen diffusion, and vacancy diffusion. Furthermore, these concepts were also applied for estimating the degree of viscoelastic deterioration of blood vessel walls, which is dominated by a time-dependent mechanism, and for the diagnosis of aneurysm accompanied by the viscoelastic deterioration of the blood vessel wall. In these theories, new mechanical indexes were derived as dominant factors for predicting the life of fatigue crack growth and the time-dependent fracture of notched specimens of materials such as hydrogen embrittlement and high-temperature creep. Furthermore, as an example of a practical application, these theories were applied to estimate the degree of viscoelastic deterioration and chaotic motions of blood vessel walls, which are closely related to blood vessel diseases such as atherosclerosis and aneurysm. Moreover, new indexes to diagnose them were also proposed for clinical applications.  相似文献   

12.
13.
We study the internal dynamical processes taking place in a granular packing below yield stress. At all packing fractions and down to vanishingly low applied shear, a logarithmic creep is observed. The experiments are analyzed using a viscoelastic model which introduces an internal, time-dependent, fluidity variable. For all experiments, the creep dynamics can be rescaled onto a unique curve which displays jamming at the random-close-packing limit. At each packing fraction, we measure a stress corresponding to the onset of internal granular reorganization and a slowing down of the creep dynamics before the final yield.  相似文献   

14.
Optical studies of pulsed-laser fragmentation of biliary calculi   总被引:2,自引:0,他引:2  
The fragmentation of gallstones and kidney stones using pulsed visible laser radiation has recently been demonstrated; however, the fragmentation mechanism is not well understood. The temporal and spectral characteristics of the bright flash of light accompanying fragmentation of gallstones were studied using 0.8 and 360-s-long, 690-nm-wavelength, dye-laser pulses. Time-resolved visible emission spectra show a broad continuum upon which line spectra are superimposed. The continuum emission is due to free-free and free-bound electron transitions indicative of a plasma and the line spectra are due to neutral and ionized calcium. Initiation of this plasma is fluence rather than intensity dependent. A model is proposed in which laser energy is coupled to the plasma, which then impulsively expands, generating intense acoustic transients which fracture the stone.  相似文献   

15.
Ku波段编码式电控超薄周期单元设计与验证   总被引:1,自引:0,他引:1       下载免费PDF全文
杨欢欢  杨帆  许慎恒  李懋坤  曹祥玉  高军 《物理学报》2016,65(5):54102-054102
编码式电控周期单元通过加载电子控制器件使周期结构具有编码式的电可调特点. 本文利用PIN二极管, 设计实现了一种工作在Ku波段的超薄平面电控单元结构. 当外加电压控制二极管导通或截止时, 该结构的反射相位呈现出180°的相位差, 并且具有较低的反射损耗. 因此, 当对周期排列的单元外加不同的电压时, 可等效为用不同组合的“1”, “0”对结构进行编码, 从而可以获得不同的电磁功能. 为验证单元的编码特性, 从“场”与“路”两个角度考虑, 设计了实际的偏置电路, 制作了单元样品, 并基于波导法测试了其性能. 实验结果表明: 在加载不同的控制电压时, 制作的单元结构实现了设计的低损耗和相位差; 实验与仿真符合良好. 提出的周期单元形式简单, 厚度超薄, 其电控编码式特性在主动式隐身表面或波束捷变天线设计等许多方面都有潜在应用.  相似文献   

16.
Effects of two parameters on enhancement of the time-dependent fracture manifested by a slow stable crack propagation that precedes catastrophic failure in ductile materials have been studied. One of these parameters is related to the material ductility (ρ) and the other describes the geometry (roughness) of crack surface and is measured by the degree of fractality represented by the fractal exponent α, or — equivalently — by the Hausdorff fractal dimension D for a self-similar crack. These studies of early stages of ductile fracture are preceded by a brief summary of modeling the phenomenon of delayed fracture in polymeric materials, sometimes referred to as “creep rupture”. Despite different physical mechanisms involved in the preliminary stable crack extension and despite different mathematical representations, a remarkable similarity of the end results pertaining to the two phenomena of slow crack growth that occur either in viscoelastic or ductile media has been demonstrated.  相似文献   

17.
Using resistively-shunted-junction dynamics, we numerically investigate the two-dimensional XY model with random phase shift. The critical temperatures and critical exponents are determined by dynamic scaling analysis. For weak disorder strengths, the system undergoes a Kosterlitz-Thouless (KT). A non-KT type phase transition is also observed for strong disorders. A genuine continuous depinning transition at zero temperature and creep motion at low temperature are also studied for various disorder strengths. The relevant critical currents and critical exponents are evaluated, and a non-Arrhenius creep motion is observed in the low temperature phases.  相似文献   

18.
含有源频率选择表面可调复合吸波体   总被引:1,自引:0,他引:1       下载免费PDF全文
陈谦  江建军  别少伟  王鹏  刘鹏  徐欣欣 《物理学报》2011,60(7):74202-074202
基于传输线等效理论,设计了含有源频率选择表面(active frequency selective surface,AFSS)的三层可调复合吸波体,第一层是表面层,为AFSS衬底;中间层是AFSS层,由频率选择表面(frequency selective surface,FSS)和PIN二极管阵列构成;第三层是介质层.反射率测量结果表明,通过调节PIN二极管阵列偏置电压可以动态调节吸波体反射特性,在偏置电压为5 V时,可获得最佳吸波性能,在5—15 GHz和5.3—13 GHz频段分别可获得-8 dB和- 关键词: 频率选择表面 复合吸波材料 反射率 PIN二极管  相似文献   

19.
The nonlinear dynamics of the space-time structure of macrolocalized deformation is studied by a set of high-speed in situ methods under the conditions of serrated creep in an aluminum-magnesium Al-6 wt % Mg alloy at room temperature. Macroscopic deformation jumps with an amplitude of several percent are detected in the creep curve of this alloy. It is found that a complex space-time structure of macrolocalized deformation bands moving in a correlated manner forms spontaneously in the material during the development of a deformation jump. The difference between the observed picture of deformation bands and the well-known Portevin-Le Chatelier classification of deformation bands is discussed.  相似文献   

20.
The optical method of caustics is developed here to study the fracture of viscoelastic materials. By adopting a distribution of viscoelastic stress fields near the crack tip, the method of caustics is used to determine the viscoelastic fracture parameters from the caustic patterns near the crack tip. Two viscoelastic materials are studied. These are PMMA and ternary composites of HDPE/POE-g-MA/CaCO3. The transmitted and reflective methods of caustics are performed separately to investigate viscoelastic fracture behaviors. The stress intensity factors (SIFs) versus time is determined by a series of shadow spot patterns combined with viscoelastic parameters evaluated by creep tests. In order to understand the viscoelastic fracture mechanisms of HDPE/POE-g-MA/CaCO3 composites, their fracture surfaces are observed by a Scanning Electron Microscope (SEM). The results indicate that the method of caustics can be used to characterize the fracture behaviors of viscoelastic materials and further to optimize the design of polymer composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号