首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epitaxial islands grown on various substrates are usually strained because of differences in lattice constants of the materials of the island and the substrate. Shape transition in the growth of strained islands has been proposed as a mechanism for strain relief and a way to form self-organized quantum wires. Shape transition usually leads to an elongated island growth. However, an elongated island growth may also be due to an anisotropic diffusion of material, the anisotropy being imposed by the symmetry of the substrate surface. In the present example, growth of gold silicide wire-like nanostructures on a Si(1 1 0) surface has been investigated by photoemission electron microscopy (PEEM). Growth of elongated unidirectional gold silicide islands, with an aspect ratio as large as 12:1, has been observed by PEEM following gold deposition on the Si substrate and subsequent annealing at the Au-Si eutectic temperature. Distribution of the width and the length of the gold silicide islands as a function of island area shows a feature similar to that for the shape transition. However, detailed investigations reveal that the elongated growth of gold silicide islands is rather mainly due to anisotropic diffusion of gold due to the twofold symmetry of the (1 1 0) surface of the Si substrate.  相似文献   

2.
We demonstrate the growth of self-assembled nanowires of cobalt silicide on Si(111), (100), and (110) substrates during deposition of Co onto a heated Si substrate. Silicide islands form via an endotaxial mechanism, growing into the substrate along inclined Si{111} planes, which breaks the symmetry of the surface and leads to a long, thin nanowire shape. During growth, both the length and width of the islands increase with time in a fixed proportion that varies strongly with growth temperature, which shows that the nanowire shape is kinetically determined. It is expected that nanowires could form in many other overlayer/substrate systems via this mechanism.  相似文献   

3.
The growth of Si homoepitaxial layers on Si(001) substrates by molecular beam epitaxy is analyzed for a set of growth conditions in which diverse nanometer-scale features develop. Using Si substrates prepared by exposure to HF vapor and annealing in ultra-high vacuum, a rich variety of surface morphologies is found for different deposited layer thicknesses and substrate temperatures in a reproducible way, showing a critical dependence on both. Arrays of 3D islands (truncated pyramids), percolated ridge networks, and square pit (inverted pyramid) distributions are observed. We analyze the obtained arrangements and find remarkable similarities to other semiconductor though heteroepitaxial systems. The nanoscale entities (islands or pits) display certain self assembly and ordering, concerning size, shape, and spacing. Film growth sequence follows the ‘islands–coalescence–2D growth’ pathway, eventually leading to optimum flat morphologies for high enough thickness and temperature.  相似文献   

4.
We have investigated the growth mode and surface morphology of CaF2 film on Si(1 1 1)7×7 substrate by reflection high-energy electron diffraction (RHEED) using very weak electron beam and atomic force microscopy (AFM). It was found by RHEED intensity oscillation measurements and AFM observations that three-dimensional (3D) islands grow at RT; however, rather flat surface appears with two-dimensional (2D) islands around 300 °C. Especially, at high temperature of 700 °C, characteristic equilateral triangular terraces (or islands) with flat and wide shape grow with the tops directed toward [1 1 −2] of substrate Si(1 1 1). On the other hand, the desorption process of the CaF2 film due to electron stimulated desorption (ESD) was also examined. It was found that the ESD process at 300 °C forms characteristic equilateral triangular craters on the film surface with the tops (or corners) directed toward [−1 −1 2] of substrate Si(1 1 1), provided that the film was grown at 700 °C.  相似文献   

5.
Scanning tunneling microscopy is used to study the epitaxial growth of silicon on Si(111)-(7×7) by Chemical Vapour Deposition (CVD) of disilane (Si2H6) at elevated substrate temperatures directly during the growth process. Different kinetic processes, as island nucleation, growth and coarsening and step flow have directly been imaged as a function of temperature and Si2H6 flow. On a substrate with a low defect concentration several growth modes depending on the flux and the total coverage are distinguished: the formation of multi-level islands as a transient mode leaving the substrate partially uncovered up to 20 bilayers, a transition to layer-by-layer growth when the multi-level islands initially formed coalesce and the formation of three-dimensional islands with tetrahedral shape at higher growth rates which are only metastable due to the presence of hydrogen at the surface. The equilibrium shape of two-dimensional islands is a hexagon whereas the kinetically influenced shape during growth is triangular.  相似文献   

6.
R. Negishi 《Surface science》2006,600(5):1125-1128
The Au silicide islands have been fabricated by additional deposition of Au on the prepared surface at 270 °C where the Si islands of magic sizes were formed on the Si(1 1 1)-(7 × 7) dimer-adatom-stacking fault substrate. The surface structure on the Au silicide islands shows the Au/Si(1 1 1)-√3 × √3 reconstructed structure although the substrate remains 7 × 7 DAS structure. The size of the Au silicide islands depends on the size distribution of the preformed Si islands, because the initial size and shape of the Si islands play important roles in the formation of the Au silicide island. We have achieved the fabrication of the Au silicide islands of about the same size (∼5 nm) and the same shape by controlling the initial Si growth and the additional Au growth conditions.  相似文献   

7.
A study has been carried out on the morphology and structure of three-dimensional (3D) SiGe islands grown by molecular beam epitaxy (MBE) on Si(100) substrates. Samples of Si1-xGex alloys have been prepared to investigate the effects either of the alloy composition or of the growth temperature. Atomic force microscopy (AFM) evidenced the growth of 3D islands and transmission electron microscopy (TEM) demonstrated wetting layer growth on Si(100), independently on the deposition conditions. Energy dispersive spectroscopy (EDS) micro-analyses carried out on cross-sections of large Si1-xGex islands with defects allowed a measurement of the Ge distribution in the islands. To the best of our knowledge, these have been the first experimental evidences of a composition change inside SiGe islands. The interpretation of the experimental results has been done in terms of strain-enhanced diffusion mechanisms both of the growing species (Si and Ge) and of small islands.  相似文献   

8.
We report on studies of strain and composition of two-dimensionally ordered SiGe islands grown by molecular beam epitaxy using high resolution x-ray diffraction. To ensure a small size distribution of the islands, pit-patterned (001) Si wafers were used as substrates. The Si wafers were patterned by optical lithography and reactive ion etching. The pits for island growth are ordered in regular 2D arrays with periods ranging from 500 to 1000 nm along two orthogonal 〈110〉 directions. After the growth of a Si buffer layer, 5 to 9 monolayers of Ge are deposited, leading to the formation of islands with either dome- or barn shape, depending on the number of monolayers deposited. The Si capping of the islands is performed at low temperatures (300C) to avoid intermixing and thus strain relaxation. Information on the surface morphology obtained by atomic force microscopy (AFM) was used to set up models for three-dimensional Finite Element Method (FEM) simulations of the islands including the patterned Si substrate. In the model, special attention was given to the non uniform distribution of the Ge content within the islands. The FEM results served as an input for calculating the diffracted x-ray intensities using kinematical scattering theory. Reciprocal space maps around the vicinity of symmetric (004) and asymmetric (113) and (224) Bragg peaks were recorded in coplanar geometry. Simulating different germanium gradients leads to altered scattered intensity distribution and consequently information on this quantity is obtained for both dome- and barn-shaped islands as well as on the strain fields.  相似文献   

9.
With a scanning tunneling microscope (STM), we study the initial stage of nucleation and growth of Si on Pb monolayer covered Si(111) surfaces. The Pb monolayer can work as a good surfactant for growth of smooth Si thin films on the Si(111) substrate. We have found that nucleation of two-dimensional (2D) Pb-covered Si islands occurs only when the substrate temperature is high enough and the Si deposition coverage is above a certain coverage. At low deposition coverages or low substrate temperatures, deposited Si atoms tend to self-assemble into a certain type of Si atomic wires, which are immobile and stable against annealing to ~ 200 °C. The Si atomic wires always appear as a double bright-line structure with a separation of ~ 9 Å between the two lines. After annealing to ~ 200 °C for a period of time, some sections of Si atomic wires may decompose, meanwhile the existing 2D Pb-covered Si islands grow laterally in size. The self-assembly of Si atomic wires indicate that single Si adatoms are mobile at the Pb-covered Si(111) surface even at room temperature. Further study of this system may reveal the detailed atomic mechanism in surfactant-mediated epitaxy.  相似文献   

10.
The formation of dislocation-rich and dislocation-free silicon islands during growth in the absence of mechanical stresses has been studied by scanning tunneling microscopy. The rounded shape of islands obtained at growth temperatures of 400–500°C on the oxidized Si(111) surface is associated with the presence of dislocations within them. The transfer of atoms from the oxidized surface to the islands occurs due to the barrier of the potential energy at the SiO2/Si boundary. The {111} and {311} facets dominate in the shape of the islands grown at 500–550°C. Their appearance indicates the absence of the threading dislocations in the islands and that the growth is limited by the stage of the nucleation of a new atomic layer.  相似文献   

11.
The growth of Pb films on the Si(1 0 0)-2 × 1 surface has been investigated at low temperature using scanning tunneling microscopy. Although the orientation of the substrate is (1 0 0), flat-top Pb islands with (1 1 1) surface can be observed. The island thickness is confined within four to nine atomic layers at low coverage. Among these islands, those with a thickness of six layers are most abundant. Quantum-well states in Pb(1 1 1) islands of different thickness are acquired by scanning tunneling spectroscopy. They are found to be identical to those taken on the Pb(1 1 1) islands grown on the Si(1 1 1)7 × 7 surface. Besides Pb(1 1 1) islands, two additional types of Pb islands are formed: rectangular flat-top Pb(1 0 0) islands and rectangular three-dimensional (3D) Pb islands, and both their orientations rotate by 90° from a terrace to the adjacent one. This phenomenon implies that the structures of Pb(1 0 0) and 3D islands are influenced by the Si(1 0 0)-2 × 1 substrate.  相似文献   

12.
We investigated the initial growth stages of Si(x)Ge(1-x)/Si(001) by real time stress measurements and in situ scanning tunneling microscopy at deposition temperatures, where intermixing effects are still minute (< or =900 K). Whereas Ge/Si(001) is a well known Stranski-Krastanow system, the growth of SiGe alloy films switches to a 3D island mode at Si content above 20%. The obtained islands are small (a few nanometers), are uniform in shape, and exhibit a narrow size distribution, making them promising candidates for future quantum dot devices.  相似文献   

13.
A novel mechanism is described which enables the selective formation of three-dimensional Ge islands. Submonolayer adsorption of Ga on Si(111) at high temperature leads to a self-organized two-dimensional pattern formation by separation of the 7 x 7 substrate and Ga/Si(111)-(square root[3] x square root[3])-R30 degrees domains. The latter evolve at step edges and domain boundaries of the initial substrate reconstruction. Subsequent Ge deposition results in the growth of 3D islands which are aligned at the boundaries between bare and Ga-covered domains. This result is explained in terms of preferential nucleation conditions due to a modulation of the surface chemical potential.  相似文献   

14.
李玮聪  邹志强  王丹  石高明 《物理学报》2012,61(6):66801-066801
锰的硅化物在微电子器件、自旋电子学器件等领域具有良好的应用前景, 了解锰的硅化物薄膜在硅表面的生长规律是其走向实际应用的关键步骤之一. 本文采用分子束外延方法在Si(100)-2× 1表面沉积了约4个原子层的锰薄膜, 并利用超高真空扫描隧道显微镜研究了该薄膜与硅衬底之间在250-750℃范围内的固相反应情况. 室温下沉积在硅衬底表面的锰原子与衬底不发生反应, 薄膜由无序的锰团簇构成; 当退火温度高于290℃时, 锰原子与衬底开始发生反应, 生成外形不规则的枝晶状锰硅化物和富锰的三维小岛; 325℃时, 衬底上开始形成平板状的MnSi小岛; 525℃时, 枝晶状锰硅化物完全消失, 出现平板状的MnSi1.7大岛; 高于600℃时, 富锰的三维小岛和平板状的MnSi小岛全部消失, 仅剩下平板状的MnSi1.7大岛. 这些结果说明退火温度决定了薄膜的形态和结构. 在大约600℃退火时岛的尺寸随着退火时间的延长而逐渐增大, 表明岛的生长遵从扩散限制的Ostwald熟化机理.  相似文献   

15.
G. Prévot  B. Croset 《Surface science》2007,601(9):2017-2025
We have studied by Spot Profile Analysis Low Energy Electron Diffraction (SPA-LEED) the growth of gold particles on the N/Cu(0 0 1) self-organized surface. This template consists of nitrogen islands separated by bare Cu lines and forming a regular 2D array of period 5 nm. When Au is evaporated onto this surface, it mainly grows at the intersections between the Cu lines. The islands organization reproduces then the substrate 2D ordering.However, if the substrate temperature is too low, islands form everywhere. On the contrary, if the substrate temperature is too high, some nucleation sites are empty. By following the intensity of the diffraction satellites during the growth, we have observed that the ordering of the Au particles is optimum when the substrate temperature is between 210 and 290 K. Using both an analytical treatment based on the rate equations and kinetic Monte-Carlo simulations, we have determined the activation energy for the diffusion process and the energy of the traps.  相似文献   

16.
The first direct calorimetric measurements of the energetics of metal film growth on a semiconductor surface are presented. The heat of adsorption of Ag on Si(100)-(2 x 1) at 300 K decreases from approximately 347 to 246 kJ/mol with coverage in the first monolayer (ML) due to overlap of substrate strain from nearby Ag islands. It then rises quickly toward the bulk sublimation enthalpy (285 kJ/mol) as 3D particles grow. A wetting layer grows to 1.0 ML, but is metastable above approximately 0.55 ML and dewets when kinetics permit. This may be common when adsorbate islands induce a large strain in the substrate surface nearby.  相似文献   

17.
利用原位扫描隧道显微镜和低能电子衍射分析了Si的纳米颗粒在Si3N4 /Si(111)和Si3N4 /Si(10 0 )表面生长过程的结构演变 .在生长早期T为 35 0— 10 75K范围内 ,Si在两种衬底表面上都形成高密度的三维纳米团簇 ,这些团簇的大小均在几个纳米范围内 ,并且在高温退火时保持相当稳定的形状而不相互融合 .当生长继续时 ,Si的晶体小面开始显现 .在晶态的Si3N4 (0 0 0 1) /Si(111)表面 ,Si的 (111)小面生长比其他方向优先 ,生长方向与衬底Si(111)方向一致 .最后在大范围内形成以 (111)为主的晶面 .相反 ,在非晶的Si3N4 表面 ,即Si3N4 /Si(10 0 ) ,Si晶体的生长呈现完全随机的方向性 ,低指数面如 (111)和 (10 0 )面共存 ,但它们并不占据主导地位 ,大部分暴露的小面是高指数面如 (113)面 .对表面生长过程进行了探讨并给出了合理的物理解释  相似文献   

18.
Pb islands grown on a Si substrate transform at room temperature from a flattop facet geometry into an unusual ring shape. The volume-preserving mass transport is catalyzed by the electrical field from the tip of a scanning tunneling microscope. The ring morphology results from the competing classical and quantum effects in the shape relaxation. The latter is enhanced by the large anisotropy of the effective mass, and leads to a sequential strip-flow growth on alternating strips of the same facet defined by substrate steps, showing its dynamical impact on the stability of a nanostructure.  相似文献   

19.
In this paper, we present a photoluminescence (PL) study of Si/Ge/SiGe/Si structures grown by gas source molecular beam epitaxy on an (1 1 8) undulated surface with various Ge coverage. Nucleation and growth of Ge films is obtained by the Stranski–Krastanov mechanism. The influence of the substrate orientation on the changeover 2D–3D growth mode is investigated. Furthermore, we show the use of growing an SiGe wetting layer to control the uniformity of the Ge island size. The PL signal related to the Ge islands is found to be highly dependent of the power excitation and is observed up to room temperature.  相似文献   

20.
Au island nucleation and growth on a Si(1 1 1) 7 × 7 vicinal surface was studied by means of scanning tunneling microscopy. The surface was prepared to have a regular array of step bunches. Growth temperature and Au coverage were varied in the 255-430 °C substrate temperature range and from 1 to 7 monolayers, respectively. Two kinds of islands are observed on the surface: Au-Si reconstructed islands on the terraces and three-dimensional (3D) islands along the step bunches. Focusing on the latter, the dependence of island density, size and position on substrate temperature and on Au coverage is investigated. At 340 °C and above, hemispherical 3D islands nucleate systematically on the step edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号