首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
量子自旋液体是一种新奇的磁性物态。由于极强的量子涨落,直至零温都不会出现长程序。量子自旋液体的基态不能用序参量描述,并且缺少对称性破缺,因此该物态的实现打破朗道理论的范式。对于量子自旋液体的研究有助于理解高温超导的机理,并且可以被应用在量子计算和量子信息中。目前,尽管理论上有了长足的发展,但仍旧没有任何一个材料被证实为量子自旋液体。因此,探测和确认一个真正的量子自旋液体材料是当前的研究重点。缪子自旋弛豫是一个对磁场极为敏感的实验技术,被广泛应用于量子自旋液体候选材料的研究中。该技术可以观测基态中是否存在磁有序,测量系统中的涨落频率,这两点都是表征量子自旋液体的重要性质。本文简要介绍了量子自旋液体态和缪子自旋弛豫技术,回顾了近期在不同体系的量子自旋液体候选材料中的实验结果,特别是缪子自旋弛豫的成果。这些体系包括一维反铁磁海森堡链(苯甲酸铜),三角格子(YbMgGaO4,NaYbO2 和TbInO3),笼目格[ZnCu3(OH)6Cl2 和 m3Sb3Zn2O14],蜂窝状格子(Na2IrO3 和 α-RuCl3),以及烧绿石结构(Tb2Ti2O7,Pr2Ir2O7 和Ce2Zr2O7)。  相似文献   

2.
Recent experiments on the "hyperkagome" lattice system Na4Ir3O8 have demonstrated that it is a rare example of a three-dimensional spin-1/2 frustrated antiferromagnet. We investigate the role of quantum fluctuations as the primary mechanism lifting the macroscopic degeneracy inherited by classical spins on this lattice. In the semiclassical limit we predict, based on large-N calculations, that an unusual q[over -->]=0 coplanar magnetically ordered ground state is stabilized with no local zero modes that correspond to local deformations of the spin configurations. This phase melts in the quantum limit and a gapped topological Z2 spin liquid phase emerges. In the vicinity of this quantum phase transition, we study the dynamic spin structure factor and comment on the relevance of our results for future neutron scattering experiments.  相似文献   

3.
We report an experimental/theoretical study of single-crystal Bi(2)Ir(2)O(7) that possesses a metallic state with strongly exchange-enhanced paramagnetism. The ground state of Bi(2)Ir(2)O(7) is characterized by the following features: (1) a divergent low-temperature magnetic susceptibility that indicates no long-range order down to 50?mK; (2) strongly field-dependent coefficients of the low-temperature T and T(3) terms of the specific heat; (3) a conspicuously large Wilson ratio R(W)?≈?53.5; and (4) unusual temperature and field dependences of the Hall resistivity that abruptly change below 80?K, without any clear correlation with the magnetic behavior. All these unconventional properties suggest the existence of an exotic ground state in Bi(2)Ir(2)O(7).  相似文献   

4.
We study the antiferromagnetic spin-1/2 Heisenberg model on the highly frustrated, three-dimensional, hyperkagome lattice of Na(4)Ir(3)O(8) using a series expansion method. We propose a valence bond crystal with a 72 site unit cell as a ground state that supports many, very low lying, singlet excitations. Low energy spinons and triplons are confined to emergent lower-dimensional motifs. Here, and for analogous kagome and pyrochlore states, we suggest finite temperature signatures, including an Ising transition, in the magnetic specific heat due to a multistep breaking of discrete symmetries.  相似文献   

5.
Motivated by recent experiments on Na4Ir3O8 [Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, arXiv:0705.2821 (unpublished)], we study the classical antiferromagnet on a frustrated three-dimensional lattice obtained by selectively removing one of four sites in each tetrahedron of the pyrochlore lattice. This "hyperkagome" lattice consists of corner-sharing triangles. We present the results of large-N mean field theory and Monte Carlo computations on O(N) classical spin models. It is found that the classical ground states are highly degenerate. Nonetheless a nematic order emerges at low temperatures in the Heisenberg model (N=3) via "order by disorder," representing the dominance of coplanar spin configurations. Implications for ongoing experiments are discussed.  相似文献   

6.
Analysis of published data gathered on a sample of Na(2)IrO(3), held deep inside the antiferromagnetic phase at 1.58?K, shows that iridium magnetic dipole moments, measured in resonant x-ray Bragg diffraction, lie in the a-c plane of the monoclinic crystal and enclose an angle ≈118°?with the c-axis. These findings, together with bulk measurements, are united in a plausible magnetic ground state for an iridium ion constructed from a Kramers doublet. A magnetic space group, derived from the chemical space group C2/m (unique axis b), possesses an anti-translation, to accommodate antiferromagnetic order, and an odd, two-fold axis of rotation symmetry on the b-axis, [Formula: see text], placing Ir magnetic dipoles perpendicular to the b-axis. Anapoles (toroidal dipoles) are predicted to be likewise confined to the a-c plane, and magnetic charges forbidden.  相似文献   

7.
According to density functional theory (DFT) using the plane wave base and pseudo-potential, we investigate the effects of the specific location of oxygen vacancy (VO) in a (Ti,Co)O 6 distorted octahedron on the spin density and magnetic properties of Co-doped rutile TiO2 dilute magnetic semiconductors. Our calculations suggest that the V O location has a significant influence on the magnetic moment of individual Co cations. In the case where two Co atoms are separated far away from each other, when the V O is located at the equatorial site of a Co-contained octahedron, the ground state of the two Co cations is d6 (t3 2g ↑, t 3 2g ↓) without any magnetic moment. However, if the V O is located at the apical site, these two Co sites have different ground states and magnetic moments. The spin densities are also observed to be modified by the exchange coupling between the Co cations and the location of V O . Some positive spin polarization is induced around the adjacent O ions.  相似文献   

8.
The magnetic properties and electronic structure of (K,Tl)(y)Fe(1.6)Se(2) is studied using first-principles calculations. The ground state is checkerboard antiferromagnetically coupled blocks of the minimal Fe(4) squares, with a large block-spin moment ~11.2 μ(B). The magnetic interactions could be modeled with a simple spin model involving both the inter- and intrablock, as well as the nearest-neighbor and next-nearest-neighbor couplings. The calculations also suggest a metallic ground state except for y=0.8 where a band gap ~400-550 meV opens, showing an antiferromagnetic insulator ground state for (K,Tl)(0.8)Fe(1.6)Se(2). The electronic structure of the metallic (K,Tl)(y)Fe(1.6)Se(2) is highly three dimensional with unique Fermi surface structure and topology. These features indicate that the Fe-vacancy ordering is crucial to the physical properties of (K,Tl)(y)Fe(2-x)Se(2).  相似文献   

9.
The thermal conductivity and heat capacity of single crystals of the spin 1/2 quasi-2D Heisenberg antiferromagnet K(2)V(3)O(8) have been measured from 1.9 to 300 K in magnetic fields from 0 to 8 T. The zero field thermal conductivity data are consistent with resonant scattering of phonons by magnons near the zone boundary. Application of a magnetic field greater than 1 T, however, produces a new magnetic ground state with substantial heat transport by long wavelength magnons.  相似文献   

10.
Spin-lattice relaxation of (129)Xe nuclei in solid natural xenon has been investigated in detail over a large range of paramagnetic O(2) impurity concentrations. Direct measurements of the ground state magnetic properties of the O(2) are difficult because the ESR (electron spin resonance) lines of O(2) are rather unstructured, but NMR measurements in the liquid helium temperature region (1.4-4 K) are very sensitive to the effective magnetic moments associated with the spin 1 Zeeman levels of the O(2) molecules and to the O(2) magnetic relaxation. From these measurements, the value of the D[Sz(2)-(1/3)S(2)] spin-Hamiltonian term of the triplet spin ground state of O(2) can be determined. The temperature and magnetic field dependence of the measured paramagnetic O(2)-induced excess line width of the (129)Xe NMR signal agree well with the theoretical model with the spin-Hamiltonian D=0.19 meV (2.3 K), and with the reasonable assumption that the E[S(x)(2)-S(y)(2)] spin-Hamiltonian term is close to 0 meV. An anomalous temperature dependence between 1.4 K and 4.2K of the (129)Xe spin-lattice relaxation rate, T(1n)(-1)(T), is also accounted for by our model. Using an independent determination of the true O(2) concentration in the Xe-O(2) solid, the effective spin lattice relaxation time (which will be seen to be transition dependent) of the O(2) at 2.3 K and 0.96 T is determined to be approximately 1.4 x 10(-8)s. The experimental results, taken together with the relaxation model, suggest routes for bringing highly spin-polarized (129)Xe from the low temperature condensed phase to higher temperatures without excessive depolarization.  相似文献   

11.
Powder neutron diffraction and resonant x-ray scattering measurements from a single crystal have been performed to study the low-temperature state of the 2D frustrated, quantum-Heisenberg system Li2VOSiO4. Both techniques indicate a collinear antiferromagnetic ground state, with propagation vector k=(1 / 2 1 / 2 0), and magnetic moments in the a-b plane. Contrary to previous reports, the ordered moment at 1.44 K, m=0.63(3)micro(B), is very close to the value expected for the square lattice Heisenberg model ( approximately 0.6micro(B)). The magnetic order is three dimensional, with antiferromagnetic a-b layers stacked ferromagnetically along the c axis. Neither x-ray nor neutron diffraction shows evidence for a structural distortion between 1.6 and 10 K.  相似文献   

12.
We performed electrical resistivity ρ, magnetic susceptibility χ, specific heat C and electron diffraction measurements on single-crystalline samples of PrT2Zn20 (T = Ru, Rh and Ir). The three compounds show the Van Vleck paramagnetic behavior, indicating the nonmagnetic crystalline electric field (CEF) ground states. A Schottky-type peak appears at around 14 K, irrespective of the T element, which can be moderately reproduced by a doublet–triplet model. For T = Ru, a structural transition occurs at Ts = 138 K, below which no phase transition appears down to 0.04 K. On the other hand, for T = Ir, antiferroquadrupole (AFQ) ordering arising from the nonmagnetic Γ3 doublet takes place at TQ = 0.11 K. For T = Rh, despite a structural transition between 170 and 470 K, the CEF ground state is still the non-Kramers Γ3 doublet. However, no phase transition due to the Γ3 doublet was observed even down to 0.1 K.  相似文献   

13.
The properties of a two-dimensional geometrically frustrated magnetic material based on the Kagomé net, Ba(2)Sn(2)ZnGa(3)Cr(7)O(22), are reported. The Kagomé net is fully filled with magnetic ions. A Curie-Weiss theta theta(W) = -312 K is found with a spin glass transition at approximately 1.5 K, indicating strong geometrical magnetic frustration. This compound is the most two dimensional of a structural series with the geometrically frustrated materials ZnCr(2)O(4) and SrCr(8)Ga(4)O(19). The comparison of their properties tests the influence of different degrees of coupling between Kagomé layers on magnetic frustration within a single chemical and structural family.  相似文献   

14.
轩书科 《计算物理》2012,29(5):786-790
利用基于密度泛函理论的平面波赝势方法,研究BaTi2As2O的能带结构、费米面和态密度.发现:BaTi2As2O是一种非磁性金属,费米能级处的态密度主要来自Ti原子的3d电子,Ti 3d轨道和As 4p轨道有较强的杂化.没有发现其磁性基态,说明Ti原子上没有局域磁矩,与Pickett对Na2Ti2Sb2O的研究结论相吻合.  相似文献   

15.
The linearized collective Schrödinger equation for nuclear quadrupole surface vibrations incorporates a new spin degree of freedom with a spin value of 3/2. We use this equation to describe the low energy spectrum of certain even-odd Ir nuclei which have a spin 3/2 in their ground state. For that purpose we explicitly introduce collective spin-dependent potentials which simulate the interaction of the valence nucleon with the core. The linearized Schrödinger equation is transformed into an effective Schrödinger equation with collective spin-dependent potentials. Already collective spin-orbit couplings of SO(3) and SO(5) type are sufficient to reproduce the lowest excited states of even-odd Ir nuclei.  相似文献   

16.
李诚迪  赵敬龙  仲崇贵  董正超  方靖淮 《物理学报》2014,63(8):87502-087502
EuTiO_3是钙钛矿结构的量子顺电体,实验发现其基态具有平面各向异性G类反铁磁结构,本文运用基于密度泛函理论的第一性原理计算研究了EuTiO_3处于量子顺电相和应力作用下处于铁电四方相时可能的自旋取向和自旋交换耦合作用,分析了自旋耦合作用的路径,探讨了应力对磁性交换路径的作用,结果发现:当体系自由时,EuTiO_3具有自旋沿[110]方向平面内单轴各向异性的G类反铁磁结构,该结构下Eu离子4f电子自旋通过处于面心位置的O 2p实现自旋反铁磁性的超交换耦合,而在外加应力诱导的铁电四方结构下,由于自旋交换路径中Eu—O—Eu键角改变,Eu 4f电子自旋实现了[110]方向的铁磁交换耦合。  相似文献   

17.
We report the first observation of coherent magnetic excitations in a spin ladder system NaV2O5 by using femtosecond time-domain spectroscopy. A pronounced coherent oscillation is observed at 127 cm(-1) (nearly twice the spin gap energy) and assigned to a two-magnon bound state, based on the temperature dependence of the intensity below the charge ordering phase transition at T(C) = 34 K. This mode can be observable only when circularly polarized light is used as a pump or a probe beam, suggesting that it corresponds to a spin-flip excitation from the singlet ground state. A phonon mode strongly coupled to the spin state is also found at 303 cm(-1).  相似文献   

18.
The electronic structure and the magnetic properties of the non-pure organic ferromagnetic compound MnCu(pbaOH)(H2O)3 with pbaOH=2-hydroxy-1, 3-propylenebis (oxamato) are studied by using the density-functional theory with local-spin-density approximation. The density of states, total energy, and the spin magnetic moment are calculated. The calculations reveal that the compound MnCu(pbaOH)(H2O)3 has a stable metal-ferromagnetic ground state, and the spin magnetic moment per molecule is 2.208 μa, and the spin magnetic moment is mainly from Mn ionand Cu ion. An antiferromagnetic order is expected and the antiferromagnetic exchange interaction of d-electrons of Cu and Mn passes through the antiferromagnetic interaction between the adjacent O, 0, and N atoms along the path linking the atoms Cu and Mn.  相似文献   

19.
We present a numerical study of the spin-1/2 bilayer Heisenberg antiferromagnet with random interlayer dimer dilution. From the temperature dependence of the uniform susceptibility and a scaling analysis of the spin correlation length we deduce the ground state phase diagram as a function of nonmagnetic impurity concentration p and bilayer coupling g. At the site percolation threshold, there exists a multicritical point at small but nonzero bilayer coupling g(m)=0.15(3). The magnetic properties of the single-layer material La(2)Cu(1-p)(Zn,Mg)(p)O4 near the percolation threshold appear to be controlled by the proximity to this new quantum critical point.  相似文献   

20.
新型双色有机电致磷光器件   总被引:4,自引:4,他引:0       下载免费PDF全文
所研究的有机电致磷光发光器件(OLED)选用了一种新型金属铱的化合物Ir(C6)2(acac),这种金属化合物由配位体香豆素C6和乙酰丙酮(acac)与金属铱化合形成。Ir(C6)2(acac)可同时作为电子传输材料和发光掺杂剂。比较香豆素C6和Ir(C6)2(acac)固体材料的光致发光谱,可见Ir(C6)2(acac)明显抑制了有机电致发光材料分子与分子之间的发光猝灭效应。采用ITO/TPD(N,N′-diphenyl-N,N′-bis(3-methyl-phenyl)-1,1′biphenyl-4,4′diamine)/Ir(C6)2(acac)/BAlq(bis(2-methyl-8-quinolinolato-N1,O8)-(1,1′-biphenyl-4-olato)aluminum)/Alq3aluminum/Liq(8-hydroxyquinolinelithium)/Al结构,可得到CIE(Commission Interationaled′Eclairage)值为x=0.43;y=0.40的橙红色发光器件,最高亮度可达3390cd/m2,最大电流效率为1.3cd/A。采用同样的器件结构以Ir(C6)2(acac)掺杂Alq3主体得到绿色发光器件,发光色的CIE坐标值为x=0.29;y=0.58,最高亮度可达8832cd/m2,最大电流效率为5.6cd/A。器件的发光机理研究表明Ir(C6)2(acac)的非掺杂器件发光以Ir(C6)2(acac)的三线态磷光为主,器件发光为橙色;在Alq3中的单掺杂器件以Alq3和Ir(C6)2(acac)的荧光为主,同时有小比例Ir(C6)2(acac)的三线态磷光成分存在,器件总体发光为绿色。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号