首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that the Kondo effect can be induced by an external magnetic field in quantum dots with an even number of electrons. If the Zeeman energy B is close to the single-particle level spacing Delta in the dot, the scattering of the conduction electrons from the dot is dominated by an anisotropic exchange interaction. A Kondo resonance then occurs despite the fact that B exceeds by far the Kondo temperature T(K). As a result, at low temperatures T相似文献   

2.
We report the anisotropic changes in the electronic structure of a Kondo semiconductor CeOs(2)Al(10) across an anomalous antiferromagnetic ordering temperature (T(0)) of 29 K, using optical conductivity spectra. The spectra along the a and c axes indicate that an energy gap due to the hybridization between conduction bands and nearly local 4f states, namely the c-f hybridization gap, emerges from a higher temperature continuously across T(0). Along the b axis, on the other hand, another energy gap with a peak at 20 meV becomes visible at 39 K (>T(0)) and fully opens at T(0) because of a charge instability. This result implies that the appearance of the energy gap, as well as the change in the electronic structure along the b axis, induces the antiferromagnetic ordering below T(0).  相似文献   

3.
We have measured the current (I)-voltage (V) characteristics of a single-wall carbon nanotube quantum dot coupled to superconducting source and drain contacts in the intermediate coupling regime. Whereas the enhanced differential conductance dI/dV due to the Kondo resonance is observed in the normal state, this feature around zero-bias voltage is absent in the superconducting state. Nonetheless, a pronounced even-odd effect appears at finite bias in the dI/dV subgap structure caused by Andreev reflection. The first-order Andreev peak appearing around V=Delta/e is markedly enhanced in gate-voltage regions, in which the charge state of the quantum dot is odd. This enhancement is explained by a "hidden" Kondo resonance, pinned to one contact only. A comparison with a single-impurity Anderson model, which is solved numerically in a slave-boson mean-field approach, yields good agreement with the experiment.  相似文献   

4.
Motivated by the recent experiments of Jamneala et al. [Phys. Rev. Lett. 87, 256804 (2001)] by combining ab initio and renormalization group methods, we study the strongly correlated state of a Cr trimer deposited on gold. Internal orbital fluctuations of the trimer lead to a huge increase of T(K) compared to the single ion Kondo temperature explaining the experimental observation of a zero-bias anomaly for the trimers. The strongly correlated state seems to belong to a new yet hardly explored class of non-Fermi-liquid fixed points.  相似文献   

5.
We calculate the differential conductance G(V) through a quantum dot in an applied magnetic field. We use a Keldysh conserving approximation for weakly correlated and the scattering-states numerical renormalization group for the intermediate and strongly correlated regime out of equilibrium. In the weakly correlated regime, the Zeeman splitting observable in G(V) strongly depends on the asymmetry of the device. In contrast, in the strongly correlated regime the position Δ(K) of the Zeeman-split zero-bias anomaly is almost independent of such asymmetries and of the order of the Zeeman energy Δ(0). We find a crossover from the purely spin-fluctuation driven Kondo regime at small magnetic fields with Δ(K)<Δ(0) to a regime at large fields where the contribution of charge fluctuations induces larger splittings with Δ(K)>Δ(0) as it was observed in recent experiments.  相似文献   

6.
The intermediate valence compound YbAl3 exhibits a broad magnetic excitation in the inelastic neutron scattering spectrum with characteristic energy E1 approximately 50 meV, equal to the Kondo energy (T(K) approximately 600-700 K). In the low temperature (T < T(coh) approximately 40 K) Fermi liquid state, however, a new peak in the scattering occurs at E2 approximately 33 meV, which lies in the hybridization gap that exists in this compound. We report inelastic neutron scattering results for a single-crystal sample. The scattering at energies near E1 qualitatively has the momentum (Q) dependence expected for interband scattering across the indirect gap. The scattering near E2 has a very different Q dependence: it is a weak function of Q over a large fraction of the Brillouin zone and is smallest near (1/2,1/2, 1/2). A possibility is that the peak at E2 arises from a spatially localized excitation in the hybridization gap.  相似文献   

7.
We measure transport through gold grain quantum dots fabricated using electromigration, with magnetic impurities in the leads. A Kondo interaction is observed between dot and leads, but the presence of magnetic impurities results in a gate-dependent zero-bias conductance peak that is split due to a RKKY interaction between the spin of the dot and the static spins of the impurities. A magnetic field restores the single Kondo peak in the case of an antiferromagnetic RKKY interaction. This system provides a new platform to study Kondo and RKKY interactions in metals at the level of a single spin.  相似文献   

8.
We study electron transport through C(60) molecules in the Kondo regime using a mechanically controllable break junction. By varying the electrode spacing, we are able to change both the width and the height of the Kondo resonance, indicating modification of the Kondo temperature and the relative strength of coupling to the two electrodes. The linear conductance as a function of T/T(K) agrees with the scaling function expected for the spin-1/2 Kondo problem. We are also able to tune finite-bias Kondo features which appear at the energy of the first C(60) intracage vibrational mode.  相似文献   

9.
Tunneling magnetoresistance was found to be suppressed with decreasing temperature for magnetic tunnel junctions (MTJs) oxidized under high plasma power. A strong temperature dependence of the junction resistance was observed, along with zero-bias anomalies of dynamic resistance at low temperatures. Resistance shows a logarithmic dependence on temperature, and resistance versus temperature exhibits a scaling behavior. Our experimental data can be explained in a consistent way by the Kondo effect in the MTJs with the Kondo temperature TK=20-30 K.  相似文献   

10.
We investigate the Kondo effect in a quantum dot with almost degenerate spin-singlet and triplet states for an even number of electrons. We show that the Kondo temperature as a function of the energy difference between the states Delta reaches its maximum around Delta = 0 and decreases with increasing Delta. The Kondo effect is thus enhanced by competition between singlet and triplet states. Our results explain recent experimental findings. We evaluate the linear conductance in the perturbative regime.  相似文献   

11.
High-resolution photoemission study of MgB2   总被引:1,自引:0,他引:1  
We have performed high-resolution photoemission spectroscopy on MgB2 and observed opening of a superconducting gap with a narrow coherent peak. We found that the superconducting gap is s like with the gap value ( Delta) of 4.5+/-0.3 meV at 15 K. The temperature dependence (15-40 K) of the gap value follows well the BCS form, suggesting that 2Delta/k(B)T(c) at T = 0 is about 3. No pseudogap behavior is observed in the normal state. The present results strongly suggest that MgB2 is categorized into a phonon-mediated BCS superconductor in the weak-coupling regime.  相似文献   

12.
We report Sb-NQR results which evidence a heavy-fermion (HF) behavior and an unconventional superconducting (SC) property in Pr(Os4Sb12 with T(c)=1.85 K. The temperature (T) dependence of nuclear-spin-lattice-relaxation rate, 1/T(1), and NQR frequency unravel a low-lying crystal-electric-field splitting below T0 approximately 10 K, associated with Pr3+(4f(2))-derived ground state. In the SC state, 1/T(1) shows neither a coherence peak just below T(c) K nor a T3-like power-law behavior observed for anisotropic HF superconductors with the line-node gap. The isotropic energy gap with its size Delta/k(B)=4.8 K seems to open up across T(c) below T(*) approximately 2.3 K. It is surprising that Pr(Os4Sb12 looks like an isotropic HF superconductor-it may indeed argue for Cooper pairing via quadrupolar fluctuations.  相似文献   

13.
Heat capacity (C), magnetic torque, and proton NMR relaxation rate (1/T(1)) measurements were performed on Fe6:Li single crystals in order to study the crossings between S = 0 and S = 1 and between S = 1 and S = 2 magnetic states of the molecular rings, at magnetic fields B(c1) = 11.7 T and B(c2) = 22.4 T, respectively. C vs B data at 0.78 K show that the energy gap between two states remains finite at B(c)'s (Delta(1)/k(B) = 0.86 K and Delta(2)/k(B) = 2.36 K) thus proving that levels repel each other. The large Delta(1) value may also explain the anomalously large width of the peak in 1/T(1) vs B, around B(c1). This anticrossing, unexpected in a centrosymmetric system, requires a revision of the Hamiltonian.  相似文献   

14.
We present high-resolution photoelectron spectra on the A15-type conventional superconductor V 3Si, where-for the first time-both singularities of the BCS density of states can be resolved by photoemission spectroscopy (PES). With a transition temperature of about T(c) approximately 17 K the gap Delta(gap) of this compound has a magnitude of approximately 5 meV. A measurement by PES on this small energy scale requires a very high energy resolution (DeltaE less, similar5 meV) and sample temperatures significantly below T(c).  相似文献   

15.
We investigate the linear and nonlinear transport through a single level quantum dot connected to two ferromagnetic leads in Kondo regime, using the slave-boson mean-field approach for finite on-site Coulomb repulsion. We find that for antiparallel alignment of the spin orientations in the leads, a single zero-bias Kondo peak always appears in the voltage-dependent differential conductance with peak height going down to zero as the polarization grows to P=1. For parallel configuration, with increasing polarization from zero, the Kondo peak descends and greatly widens with the appearance of shoulders, and finally splits into two peaks on both sides of the bias voltage around P~0.7 until disappearing at even larger polarization strength. At any spin orientation angle θ, the linear conductance generally drops with growing polarization strength. For a given finite polarization, the minimum linear conductance always appears at θ=π.  相似文献   

16.
The La dilution of the Kondo lattice CeCoIn5 is studied. The scaling laws found for the magnetic susceptibility and the specific heat reveal two well-separated energy scales, corresponding to the single-impurity Kondo temperature T(K) and an intersite spin-liquid temperature T(*). The Ce-dilute alloy has the expected Fermi liquid ground state, while the specific heat and resistivity in the dense Kondo regime exhibit non-Fermi-liquid behavior, which scales with T(*). These observations indicate that the screening of the magnetic moments in the lattice involves antiferromagnetic intersite correlations with a larger energy scale in comparison with the Kondo impurity case.  相似文献   

17.
We report an electron spin resonance (ESR) study on single crystals of the heavy fermion metal YbRh2Si2 which shows pronounced non-Fermi liquid behavior related to a close antiferromagnetic quantum critical point. It is shown that the observed ESR spectra can be ascribed to a bulk Yb3+ resonance. This is the first observation of ESR of the Kondo ion itself in a dense Kondo lattice system. The ESR signal occurs below the Kondo temperature (T(K)) which thus indicates the existence of large unscreened Yb3+ moments below T(K). We observe the spin dynamics as well as the static magnetic properties of the Yb3+ spins to be consistent with the results of nuclear magnetic resonance and magnetic susceptibility.  相似文献   

18.
The transport properties of a single quantum dot were measured at low temperature in a regime of strong asymmetric tunnel coupling to leads. By tuning this asymmetry, the two parameters of the Kondo effect in a quantum dot, the Kondo temperature and the zero-bias zero-temperature conductance, were independently controlled. A careful analysis of the Coulomb energies and of the tunnel couplings was performed. It allowed an estimate of the Kondo temperature independently of its value obtained via the temperature dependence of the conductance. Both are in good agreement. We finally compared our experimental data with an exact solution of the Kondo problem which provides the dependence of the differential conductance on temperature and source-drain voltage. Theoretical expectations fit quite well our experimental data in the equilibrium and out-of-equilibrium regimes.  相似文献   

19.
We study the Kondo screening of a single magnetic impurity inside a nonmagnetic quantum corral located on the surface of a metallic host system. We show that the spatial structure of the corral's eigenmodes leads to a spatially dependent Kondo effect whose signatures are spatial variations of the Kondo temperature T K. Moreover, we predict that the Kondo screening is accompanied by the formation of multiple Kondo resonances with characteristic spatial patterns. Our results open new possibilities to manipulate and explore the Kondo effect by using quantum corrals.  相似文献   

20.
We have employed a new route to synthesize single phase F-doped LaOFeAs compound and confirmed the superconductivity above 20 K in this Fe-based system. We show that the new superconductor has a rather high upper critical field of over 50 T. A clear signature of superconducting gap opening below T(c) was observed in the far-infrared reflectance spectra, with 2Delta/kT(c) approximately 3.5-4.2. Furthermore, we show that the new superconductor has electron-type conducting carriers with a rather low-carrier density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号