首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectral direct numerical simulations of incompressible MHD turbulence at a resolution of up to 1024(3) collocation points are presented for a statistically isotropic system as well as for a setup with an imposed strong mean magnetic field. The spectra of residual energy, E(R)k=|E(M)k - E(K)k|, and total energy, Ek=E(K)k+E(M)k, are observed to scale self-similarly in the inertial range as E(R)k approximately k(-7/3), E(k)approximately k(-5/3) (isotropic case) and E(R)(k(perpendicular) approximately k(-2)(perpendicular), E(k(perpendicular))approximately k(-3/2)(perpendicular) (anisotropic case, perpendicular to the mean field direction). A model of dynamic equilibrium between kinetic and magnetic energy, based on the corresponding evolution equations of the eddy-damped quasinormal Markovian closure approximation, explains the findings. The assumed interplay of turbulent dynamo and Alfvén effect yields E(R)k approximately kE2(k), which is confirmed by the simulations.  相似文献   

2.
We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due to the energy transfers from large-scale velocity field to large-scale magnetic field and that the magnetic energy flux is forward. The steady-state magnetic energy is much smaller than the kinetic energy, rather than equipartition; this is because the magnetic Reynolds number is near the dynamo transition regime. We also contrast our results with those for dynamo with Pm = 20 and decaying dynamo.  相似文献   

3.
We discuss the importance of phase information and coherence times in determining the dynamo properties of turbulent flows. We compare the kinematic dynamo properties of three flows with the same energy spectrum. The first flow is dominated by coherent structures with nontrivial phase information and long eddy coherence times, the second has random phases and long-coherence time, the third has nontrivial phase information, but short coherence time. We demonstrate that the first flow is the most efficient kinematic dynamo, owing to the presence of sustained stretching and constructive folding. We argue that these results place limitations on the possible inferences of the dynamo properties of flows from the use of spectra alone, and that the role of coherent structures must always be accounted for.  相似文献   

4.
The Ω phase of the liquid sodium α-Ω dynamo experiment at New Mexico Institute of Mining and Technology in cooperation with Los Alamos National Laboratory has demonstrated a high toroidal field B(?) that is ?8×B(r), where B(r) is the radial component of an applied poloidal magnetic field. This enhanced toroidal field is produced by the rotational shear in stable Couette flow within liquid sodium at a magnetic Reynolds number Rm?120. Small turbulence in stable Taylor-Couette flow is caused by Ekman flow at the end walls, which causes an estimated turbulence energy fraction of (δv/v)(2)~10(-3).  相似文献   

5.
Amplification of magnetic field due to kinematic turbulent dynamo action is studied in the regime of small magnetic Prandtl numbers. Such a regime is relevant for planets and stars interiors, as well as for liquid-metal laboratory experiments. A comprehensive analysis based on the Kazantsev-Kraichnan model is reported, which establishes the dynamo threshold and the dynamo growth rates for varying kinetic helicity of turbulent fluctuations. It is proposed that in contrast with the case of large magnetic Prandtl numbers, the kinematic dynamo action at small magnetic Prandtl numbers is significantly affected by kinetic helicity, and it can be made quite efficient with an appropriate choice of the helicity spectrum.  相似文献   

6.
We report the observation of dynamo action in the von Kármán sodium experiment, i.e., the generation of a magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number R(m) approximately 30. A mean magnetic field of the order of 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows.  相似文献   

7.
We report a series of numerical simulations showing that the critical magnetic Reynolds number Rm(c) for the nonhelical small-scale dynamo depends on the Reynolds number Re. Namely, the dynamo is shut down if the magnetic Prandtl number Pr(m)=Rm/Re is less than some critical value Pr(m,c)< approximately 1 even for Rm for which dynamo exists at Pr(m)> or =1. We argue that, in the limit of Re-->infinity, a finite Pr(m,c) may exist. The second possibility is that Pr(m,c)-->0 as Re--> infinity, while Rm(c) tends to a very large constant value inaccessible at current resolutions. If there is a finite Pr(m,c), the dynamo is sustainable only if magnetic fields can exist at scales smaller than the flow scale, i.e., it is always effectively a large-Pr(m) dynamo. If there is a finite Rm(c), our results provide a lower bound: Rm(c) greater, similar 220 for Pr(m)< or =1/8. This is larger than Rm in many planets and in all liquid-metal experiments.  相似文献   

8.
We present a three-pronged numerical approach to the dynamo problem at low magnetic Prandtl numbers P(M). The difficulty of resolving a large range of scales is circumvented by combining direct numerical simulations, a Lagrangian-averaged model and large-eddy simulations. The flow is generated by the Taylor-Green forcing; it combines a well defined structure at large scales and turbulent fluctuations at small scales. Our main findings are (i) dynamos are observed from P(M)=1 down to P(M)=10(-2), (ii) the critical magnetic Reynolds number increases sharply with P(M)(-1) as turbulence sets in and then it saturates, and (iii) in the linear growth phase, unstable magnetic modes move to smaller scales as P(M) is decreased. Then the dynamo grows at large scales and modifies the turbulent velocity fluctuations.  相似文献   

9.
We consider magnetic fields generated by homogeneous isotropic and parity invariant turbulent flows. We show that simple scaling laws for the dynamo threshold, magnetic energy and Ohmic dissipation can be obtained depending on the value of the magnetic Prandtl number. To cite this article: S. Fauve, F. Pétrélis, C. R. Physique 8 (2007).  相似文献   

10.
Renormalized viscosity, renormalized resistivity, and various energy fluxes are calculated for helical magnetohydrodynamics using perturbative field theory. The calculation is of firstorder in perturbation. Kinetic and magnetic helicities do not affect the renormalized parameters, but they induce an inverse cascade of magnetic energy. The sources for the large-scale magnetic field have been shown to be (1) energy flux from large-scale velocity field to large-scale magnetic field arising due to non-helical interactions and (2) inverse energy flux of magnetic energy caused by helical interactions. Based on our flux results, a primitive model for galactic dynamo has been constructed. Our calculations yield dynamo time-scale for a typical galaxy to be of the order of 108 years. Our field-theoretic calculations also reveal that the flux of magnetic helicity is backward, consistent with the earlier observations based on absolute equilibrium theory.  相似文献   

11.
The first experimental study of the MHD dynamo in a quasi-single-helicity (QSH) reversed-field pinch toroidal plasma is presented. In QSH plasmas, a dominant wave number appears in the velocity fluctuation spectrum. This velocity component extends throughout the plasma volume and couples with magnetic fluctuations to produce a significant MHD dynamo electric field. The narrowing of the velocity fluctuation spectrum and the single-mode character of the dynamo are features predicted by theory and computation, but only now are observed in experiment.  相似文献   

12.
In this paper,based on the mean field dynamo theory,the influence of the electromagnetic boundary condition on the dynamo actions driven by the small scale turbulent flows in a cylindrical vessel is investigated by the integral equation approach.The numerical results show that the increase of the electrical conductivity or magnetic permeability of the walls of the cylindrical vessel can reduce the critical magnetic Reynolds number.Furthermore,the critical magnetic Reynolds number is more sensitive to the varying electrical conductivity of the end wall or magnetic permeability of the side wall.For the anisotropic dynamo which is the mean field model of the Karlsruhe experiment,when the relative electrical conductivity of the side wall or the relative magnetic permeability of the end wall is less than some critical value,the m=1(m is the azimuthal wave number)magnetic mode is the dominant mode,otherwise the m=0 mode predominates the excited magnetic field.Therefore,by changing the material of the walls of the cylindrical vessel,one can select the magnetic mode excited by the anisotropic dynamo.  相似文献   

13.
We study the evolution of magnetic fields in freely decaying magnetohydrodynamic turbulence. By quasilinearizing the Navier-Stokes equation, we solve analytically the induction equation in the quasinormal approximation. We find that, if the magnetic field is not helical, the magnetic energy and correlation length evolve in time, respectively, as E(B) proportional to t(-2(1+p)/(3+p)) and xi(B) proportional to t(2/(3+p)), where p is the index of initial power-law spectrum. In the helical case, the magnetic helicity is an almost conserved quantity and forces the magnetic energy and correlation length to scale as E(B) proportional to (logt)(1/3)t(-2/3) and xi(B) proportional to (logt)(-1/3)t(2/3).  相似文献   

14.
Ultrahigh energy neutrinos (UHEnu) scatter on relic neutrinos (Rnu) producing Z bosons, which can decay hadronically producing protons (Z burst). We compare the predicted proton spectrum with the observed ultrahigh energy cosmic ray (UHECR) spectrum and determine the mass of the heaviest Rnu via a maximum likelihood analysis. Our prediction depends on the origin of the powerlike part of the UHECR spectrum: m(nu) = 2.75(+1.28)(-0.97) eV for Galactic halo and 0.26(+0.20)(-0.14) eV for extragalactic origin. The necessary UHEnu flux should be detected in the near future.  相似文献   

15.
The scaling properties of three-dimensional magnetohydrodynamic turbulence with finite magnetic helicity are obtained from direct numerical simulations using 512(3) modes. The results indicate that the turbulence does not follow the Iroshnikov-Kraichnan phenomenology. The scaling exponents of the structure functions can be described by a modified She-Leveque model zeta(p) = p/9+1-(1/3)(p/3), corresponding to basic Kolmogorov scaling and sheetlike dissipative structures. In particular, we find zeta(2) approximately 0.7, consistent with the energy spectrum E(k) approximately k(-5/3) as observed in the solar wind, and zeta(3) approximately 1, confirming a recent analytical result.  相似文献   

16.
Solution of the inverse problem for Parker’s one-dimensional mean-field dynamo model in a thin spherical layer is considered. The method allows the spatial distribution of energy sources, the α- and Ω-effects, to be found provided specified constraints occur on the solution. The highest ratio of the magnetic energies for the Northern and Southern hemispheres is discussed as such a constraint. The method is a modification of the Monte-Carlo technique; it is convenient for parallel computations and based on minimization of the cost function that characterizes the deviation of the model solution properties from the desired ones. The calculations show that the ratio of the energies in the hemispheres may exceed an order of magnitude for both poloidal and toroidal components of the magnetic energy. The ratio depends on the distance of the effective zone of the generation of the magnetic field from the equator and the number of harmonics in the spectrum. The greater this distance is and the higher the number of harmonics is, the stronger the magnetic field asymmetry can be.  相似文献   

17.
Starting from recent observations about quasinormal modes, we use semiclassical arguments to derive the Bekenstein-Hawking entropy spectrum for d-dimensional spherically symmetric black holes. We find that, as first suggested by Bekenstein, the entropy spectrum is equally spaced: S(BH)=kln((m(0))n, where m(0) is a fixed integer that must be derived from the microscopic theory. As shown in O. Dreyer, gr-qc/0211076, 4D loop quantum gravity yields precisely such a spectrum with m(0)=3 providing the Immirzi parameter is chosen appropriately. For d-dimensional black holes of radius R(H)(M), our analysis predicts the existence of a unique quasinormal mode frequency in the large damping limit omega((d))(M)=alpha((d))c/R(H)(M) with coefficient [formula: see text], where m(0) is an integer.  相似文献   

18.
The effect of nitrogen doping on the magnetic properties of (ZnO)(n) clusters (n = 1-16) has been investigated using spin polarized density functional theory. The total energy calculations suggest that N is more stable at the O site than at the Zn site in (ZnO)(n) clusters and induces a magnetic moment of 1 μ(B)/N atom. The N-Zn-N configuration is more stable than isolated N for 3D structures. The N dopants do not show any tendency for clustering. The binding energy is found to decrease with the increase in the number of N dopants. The magnetic moment increases gradually with the increase in the number of atoms with 1 μ(B)/N atom for n ≤ 4 and less than 1 μ(B)/N for n > 4. The local magnetic moment is mainly localized at the N site with a small magnetic moment induced at the O site. The presence of a Zn vacancy (V(Zn)) induced an additional magnetic moment of 2 μ(B) on the nearest O atoms. The N dopant prefers to form a N-V(Zn) pair. The combination of N and V(Zn) in 3D structures leads to a total magnetic moment of 3 μB. The Mulliken charge transfers from Zn to N and O in all N doped (ZnO)(n) clusters. The calculated results are consistent with existing experimental and theoretical results.  相似文献   

19.
This article outlines the experimental realization of the Roberts–Busse kinematic dynamo model at the Forschungszentrum Karlsruhe. Essential observations of the spatial and temporal structures of the self-induced magnetic field and features of its saturation mechanism are presented and the experimental findings are compared with predictions from model calculations. To cite this article: U. Müller et al., C. R. Physique 9 (2008).  相似文献   

20.
《Physics letters. A》1997,236(3):211-218
The role of kinetic helicity in small-scale fast dynamo action is investigated by employing a simple statistical model for the underlying flow with statistics that are Gaussian distributed, temporally delta-correlated and spatially homogeneous and isotropic. In order to focus on small-scale dynamo action we restrict our attention to flows possessing no net kinetic helicity. With the help of a diagrammatic technique and a numerical calculation we show that the dynamo growth rate is independent of the kinetic helicity as the magnetic Reynolds number Rm → ∞. It is indicated that the latter enhances the growth of the magnetic energy only for finite Rm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号