首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In the UxLa1-xS system there is an abrupt loss of the long-range ferromagnetic ordering found in pure US at a critical concentration x c ∼ 0.57, which is far above the percolation limit. As the magnetic ground state in such a system can be strongly affected by small variations of the 5f localization, we have investigated a set of samples with different x by polarized neutron diffraction and X-ray magnetic circular dichroism (XMCD). The neutron results are consistent with early measurements performed on pure US. Even at the lowest U content (x = 0.15, below x c ) the shape of the induced form factor (f ( Q )) is comparable with that found for x = 1 and is well reproduced by either a U4+ or a U3+ state. The ratio between the orbital and the effective spin moments in the XMCD measurements confirms this result, but the evolution of the shape at the M5 edge suggests an abrupt change in the distribution of the electrons (holes) in the 5 f density of states around x c . Received 31 January 2001  相似文献   

2.
The electronic structures of the metallic and insulating phases of the alloy series Ca2-xSrxRuO4 ( 0 ? x ? 2) are calculated using LDA, LDA+U and Dynamical Mean-Field Approximation methods. In the end members the groundstate respectively is an orbitally non-degenerate antiferromagnetic insulator (x = 0) and a good metal (x = 2). For x > 0.5 the observed Curie-Weiss paramagnetic metallic state which possesses a local moment with the unexpected spin S = 1/2, is explained by the coexistence of localized and itinerant Ru-4d-orbitals. For 0.2 < x < 0.5 we propose a state with partial orbital and spin ordering. An effective model for the localized orbital and spin degrees of freedom is discussed. The metal-insulator transition at x = 0.2 is attributed to a switch in the orbital occupation associated with a structural change of the crystal. Received 27 July 2001  相似文献   

3.
We propose a Ginzburg-Landau phenomenological model for the dependence of the critical temperature on microscopic strain in tetragonal high-T c cuprates. Such a model is in agreement with the experimental results for LSCO under epitaxial strain, as well as with the hydrostatic pressure dependence of T c in most cuprates. In particular, a nonmonotonic dependence of T c on hydrostatic pressure, as well as on in-plane or apical microstrain, is derived. From a microscopic point of view, such results can be understood as due to the proximity to an electronic topological transition (ETT). In the case of LSCO, we argue that such an ETT can be driven by a strain-induced modification of the band structure, at constant hole content, at variance with a doping-induced ETT, as is usually assumed. Received 1st October 2001 and Received in final form 5 December 2001  相似文献   

4.
Neutron powder diffraction was employed to study the pressure effect on the magnetic transition in the pseudobinary Laves-phase compound Er0.57Y0.43Co2 and to determine the magnetic moments of the Er- and Co-subsystems. Our studies reveal that the onset of long-range magnetic order for both the localized 4 f (Er) and itinerant 3 d (Co) electron moments appears at about the same temperature at ambient pressure. The pressure effect on Tc is found to be negative and equal for both sublattices, namely T c / p ∼ - 0.4 K/kbar. The values of the magnetic moments of the Er and the Co ions are found = 5.40±0.15μ B /atom, = 0.50±0.07μ B /atom and 5.35±0.15μ B /atom, 0.37±0.09μ B /atom, for p = 0 and 6 kbar, respectively. Our experimental results give evidence for short-range magnetic order formation at temperatures already above Tc and for a coexistence short- and long-range order below Tc down to 4 K. Received 20 December 2001 / Received in final form 12 June 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: andrew.podlesnyak@psi.ch  相似文献   

5.
Magnetic measurements have been carried out in different LaNi1-xMnxO 3 + δ samples with 0.1 ⩽ x ⩽ 0.9. All these samples show two magnetic anomalies, one at relatively high temperature characteristic of a ferromagnetic ordering and the other at low temperature, typical of magnetic relaxation phenomena. Neutron diffraction patterns indicate that long-range ferromagnetic ordering is only achieved for x ≥ 0.5. Neutron patterns of LaNi0.5Mn0.5O 3 + δ samples show an ordered arrangement of Ni and Mn atoms in the perovskite lattice. LaNi0.5Mn0.5O 3 + δ is then, a double perovskite A2BB'O6 whereas Ni and Mn atoms are randomly distributed for the rest of the samples. X-ray magnetic circular dichroism experiments confirm the presence of collinear ferromagnetism in LaNi0.5Mn0.5O 3 + δ . The role of competitive magnetic interactions, structural disorder, magnetic anisotropy and magnetic disaccommodation is also discussed Received 19 July 2002 / Received in final form 23 October 2002 Published online 31 December 2002  相似文献   

6.
The doping of the manganese site by iridium (up to 15%) in the small A cation manganites Pr1-xCaxMnO3 ( 0.4 ? x ? 0.8), has been investigated as a new method to suppress charge-ordering and induce CMR effects. Ir doping leads to ferromagnetism and to insulator to metal transitions, with high transition temperatures reaching 180 K and CMR ratio in 7 T as large as 104. The efficiency with which iridium induces ferromagnetism and CMR is compared to previous results obtained with other substitutions (Ru, Rh, Ni, Cr...). The ionic radius of the foreign cations and their mixed-valencies are found to be the main parameters governing the ability to collapse the charge-ordered state. Received 14 May 2001 and Received in final form 2 July 2001  相似文献   

7.
We have studied in detail the crystal and magnetic structures of the oxyphosphates MFePO5 (M: divalent transition metal) using neutron powder diffraction as a function of temperature. All of them are isomorphic to the mixed valence compound α-Fe2PO5 with space-group Pnma. No disorder exists between the two metallic sites. The M2+O6 octahedra share edges between them and faces with Fe3+O6 octahedra building zigzag chains running parallel to the b-axis that are connected by PO4 tetrahedra. The topology of this structure gives rise to a complex pattern of super-exchange interactions responsible of the observed antiferromagnetic order. The magnetic structures are all collinear with the spin directed along the b-axis except for M = Co. The experimental magnetic moments of Cu+2 and Ni2+ correspond to the expected ionic value, on the contrary the magnetic moment of Fe3+ is reduced, probably due to covalence effects, and that of Co2+ is greater than the spin-only value indicating a non negligible orbital contribution. Using numerical calculations we have established a magnetic phase diagram adapted for this type of crystal structure and determined the constraints to be satisfied by the values of the exchange interactions in order to obtain the observed magnetic structure as the ground state. Received 15 December 2000 and Received in final form 25 June 2001  相似文献   

8.
The magnetic structures of Mn1-xFexWO4 with x = 0.0, 0.16, 0.21, 0.225, 0.232, 0.24, 0.27, 0.29, and 1.0 were refined from neutron powder diffraction data. The magnetic phase diagram could be completed in the coexistence range of different magnetic structures up to x = 0.29. For the magnetic state at 1.5 K a commensurate antiferromagnetic structure with a propagation vector = (±1/4, 1/2, 1/2) was found for x ⩽ 0.22 while the magnetic spins order with = (1/2, 0, 0) for x ≥ 0.22. In the latter phase, additionally, weak magnetic reflections indexed to an incommensurate ordering with = (- 0.214, 1/2, 0.457) occur in the diffraction pattern up to x = 0.29 indicating the occurence of a reentrant phase. For 0.12 ⩽ x ⩽ 0.29 the low temperature phases are separated from a magnetic high temperature phase showing only magnetic reflections indexed to a spin arrangement with = (1/2, 0, 0). The magnetic phase diagram is discussed qualitatively considering random superexchange between the statistically distributed Mn2+- and Fe2+-ions in the coexistence range 0.12 ⩽ x ⩽ 0.29 of different magnetic structures related to those of pure MnWO4 and FeWO4. Received 9 October 2002 Published online 14 March 2003  相似文献   

9.
We report on the magnetic susceptibility and electron spin resonance measurements on polycrystalline samples of the vanadium oxide VOSb2O4, a quasi-one-dimensional S = 1/2 Heisenberg system. The susceptibility vanishes at zero temperature, but there is no cusp at the onset of the susceptibility drop, and the ESR linewidth exhibits an increase characteristic of a phase transition at a much lower temperature. We show that this behaviour is consistent with the formation of a pseudo-gap in a spin-Peierls system in the adiabatic limit. Received 7 February 2001 and Received in final form 24 April 2001  相似文献   

10.
In the present paper, we study the magnetic properties of bilayer cuprate antiferromagnets. In order to evaluate the expressions for spin-wave dispersion, sublattice magnetization, Néel temperature and the magnetic contribution to the specific heat, the double time Green's function technique has been employed in the random phase approximation (RPA). The spin wave dispersion curve for a bilayer antiferromagnetic system is found to consist of one acoustic and one optic branch. The “optical magnon gap” has been attributed solely to the intra-bilayer exchange coupling (J ) as its magnitude does not change significantly with the inter-bilayer exchange coupling (Jz). However Jz is essential to obtain the acoustic mode contribution to the magnetization. The numerical calculations show that the Néel temperature (T N ) of the bilayer antiferromagnetic system increases with the Jz and a small change in Jz gives rise to a large change in the Néel temperature of the system. The magnetic specific heat of the system follows a T2 behaviour but in the presence of Jz it varies faster than T2. Received 13 July 2000 and Received in final form 14 May 2001  相似文献   

11.
We present a neutron scattering study of the temperature and composition dependence of the MnO-type superstructure reflection intensities in the diamagnetically diluted antiferromagnetic compounds EuxSr1-xTe. In these materials antiferromagnetic biquadratic and ferromagnetic three-spin interactions have been identified recently. These fourth-order non-Heisenberg interactions are able to create their own order parameter which is believed to govern the order of the transverse moment components and which, hence, is directed perpendicular to the common Heisenberg order parameter. The observed MnO-type diffraction intensities originate in the sublattice magnetizations, , of both order parameters. Due to the different composition dependencies for biquadratic interaction processes and three-spin interaction processes , the ferromagnetic three-spin interactions dominate for x > x c =0.85, while for x <0.85 the antiferromagnetic biquadratic interactions dominate. Associated with this sign change in the fourth-order interaction sum the transverse order parameter changes from the antiferromagnetic MnO type for x <0.85 to ferromagnetic for x >0.85. This is noticed as a sudden decrease of the low-temperature MnO scattering intensities at x c =0.85. Although susceptibility measurements reveal clearly a ferromagnetic component for x >0.85 no ferromagnetic Bragg intensities were observed in standard neutron scattering spectra using EuTe powder samples. We explain this by the competition of antiferromagnetic biquadratic and ferromagnetic three-spin interactions whereby a disturbed ferromagnetic superstructure may be generated which gives rise also to weak MnO-type diffraction lines. It is found that the resulting obeys a T2 law until a temperature as large as 0.75TN irrespective of the nature of the transverse order parameter. The T2 law must, hence, be common to both types of order parameter showing that the fourth-order interactions re-define the spin dynamics of both completely. From the linear composition dependence of the normalized T2 coefficient the existence of three-spin interactions is again confirmed. Received 23 July 1998 and Received in final form 12 October 1998  相似文献   

12.
A polarised neutron scattering investigation has been carried out on a powder sample of CuGeO3 within the temperature range of 1.5 K to 600 K. The magnetic scattering has been separated from all other contributions by using polarised neutrons and polarisation analysis and placed onto an absolute scale. At low temperatures the long wavelength components of the paramagnetic response are suppressed consistent with the formation of Cu dimers in which the magnetic moments are correlated antiferromagnetically. This form of the scattering persists to temperatures well above the dimerisation temperature T sp ∼ 14 K. However as the temperature is raised the intensity of the long wavelength spin fluctuations increases and above 150 K they are the dominant feature in the wave vector dependence of the response. At all temperatures the observed scattering extrapolates smoothly to the Q = 0 value given by the uniform susceptibility. Consequently the thermal variation of the uniform susceptibility arises from the evolution of the long wavelength magnetic fluctuations. At large wave vectors the energy dependence of the scattering revealed that the response occurs below 16 meV in agreement with the reported maximum magnetic excitation energy at the zone boundary in the ground state. However the total magnetic scattering is significantly less than that expected for a local moment system suggesting that the spectrum of thermal and quantum fluctuations overlap. Received 30 May 2000 and Received in final form 22 March 2001  相似文献   

13.
The magneto-elastic properties of single-crystalline La0.95Sr0.05MnO3 have been studied ultrasonically. Our investigations focussed on the temperature interval where magnetic ordering starts to evolve and results in a spin canted antiferromagnetic ground state. In detail the experiments revealed that the magnetic order parameter in low-doped manganite is only weakly coupled to lattice strains. Furthermore, the anomalous temperature dependence of the order parameter as found resembles highly that in stoichiometric LaMnO3. However, the main and most surprising finding is that external magnetic fields favor the spin canted phase in La0.95Sr0.05MnO3. It is unclear at present how the exchange interaction can be tuned by magnetic fields in the way observed and we are not aware of existing theoretical concepts which might give a plausible explanation for the unexpected field dependent behavior of the critical temperature. We believe, however, that this behavior primarily results from the fact that the exchange interaction depends sensitively on the orbital configuration of the manganese d electrons. Received 27 March 2000  相似文献   

14.
We make a new proposal to describe the very low temperature susceptibility of the doped Haldane gap compound Y2BaNi1-xZnxO5. We propose a new mean field model relevant for this compound. The ground state of this mean field model is unconventional because antiferromagnetism coexists with random dimers. We present new susceptibility experiments at very low temperature. We obtain a Curie-Weiss susceptibility χ( T ) ∼ C /(Θ + T ) as expected for antiferromagnetic correlations but we do not obtain a direct signature of antiferromagnetic long range order. We explain how to obtain the “impurity” susceptibility ( T ) by subtracting the Haldane gap contribution to the total susceptibility. In the temperature range [1 K, 300 K] the experimental data are well fitted by T ( T ) = C imp 1 + T imp / T . In the temperature range [100 mK, 1 K] the experimental data are well fitted by T ( T ) = A ln( T / T c ), where T c increases with x. This fit suggests the existence of a finite Néel temperature which is however too small to be probed directly in our experiments. We also obtain a maximum in the temperature dependence of the ac-susceptibility ( T ) which suggests the existence of antiferromagnetic correlations at very low temperature. Received 17 July 2001  相似文献   

15.
We report measurements of the resistivity, ρ, and the Seebeck coefficient, S , of a MgB2 sintered sample, and compare S with theoretical calculations based on precise electronic structure calculations. ρ is fitted well by a generalized Bloch-Grüneisen equation with a Debye temperature Θ R of 1050 K. S is given by the sum of a diffusive and a phonon drag term and the behavior in the temperature region T c < T < 0.1Θ R follows the relationship AT+BT3. The phonon drag term indicates a strong electron-phonon interaction. The diffusive term, compared with calculations, suggests that σ bands give the main contribution to the Seebeck effect. Received 16 November 2001 and Received in final form 21 December 2001  相似文献   

16.
The low temperature magnetic and transport properties of the Pr0.5Ca0.5Mn1-xNixO3 manganites ( 0≤ x ≤0.1) have been investigated. The presence of Ni hinders the charge and orbital ordering observed in Pr0.5Ca0.5MnO3 and favors the creation of ferromagnetic regions, leading to phase separation. The ferromagnetic fractions induced by the Ni substitution have been estimated from magnetization measurements, they are large and reach 40% for 4% of Ni. Steps are observed in the M ( H ) and ρ( H ) curves of all the samples at T < 5 K. They are similar to the steps observed in Pr0.5Ca0.5Mn1-xMxO3, where M is a non magnetic cation (Mg2+, Ga3+,...), and for which the ferromagnetic fractions are very small (less than 2%), however, their appearance is restricted to lower temperatures (T < 5 K) with Ni dopant than with non magnetic cations. This study shows that steps can be observed in a wide range of phase-separated systems, even when the ferromagnetic fraction is very large. Received 5 April 2002 / Received in final form 8 July 2002 Published online 14 October 2002 RID="a" ID="a"e-mail: antoine.maignan@ismra.fr  相似文献   

17.
The magnetic structure of RFe6Ga6 intermetallic compounds with R = Y, Ho have been determined by neutron powder diffraction, 57Fe M?ssbauer spectroscopy, AC susceptibility, TGA (Thermo-Gravimetric Analysis) and magnetization measurements. Both compounds crystallize in the tetragonal ThMn12 structure (space group I4/mmm) with the magnetic structure of YFe6Ga6 consisting of a simple ferromagnetic alignment of Fe moments in the basal plane with a Curie temperature of 475(5) K. Gallium atoms are found to fully occupy the 8i site, with Fe and Ga atoms equally distributed over the 8j site, whilst Fe atoms fully occupy the 8f site. The average Fe moments are 1.68(10) and 1.46(10) at 15 and 293 K, respectively. The average room temperature Fe magnetic moments determined by neutron diffraction are in overall agreement with the average Fe moment deduced from M?ssbauer spectroscopy and bulk magnetization measurements on this compound. The magnetic anisotropy of the compound HoFe6Ga6 is also planar in the temperature range 6-290 K, with Ho magnetic moments of 9.28(20) and 2.50(20) at 6 K and 290 K, respectively, coupled anti-ferromagnetically to the Fe sublattice and a Curie temperature of 460(10) K. The magneto-crystalline anisotropies of both compounds are comparable at low temperatures. Received 8 March 2001 and Received in final form 18 June 2001  相似文献   

18.
Orthorhombic EuPdSb is known to undergo two magnetic transitions, at 12 K and at T N≃ 18 K, and in phase III (T < 12 K), single crystal magnetisation data have shown that the spin structure is collinear antiferromagnetic, with magnetic moments along the crystal a axis. From a 151Eu M?ssbauer absorption study, we show that, at any temperature within phase III, all the moments have equal sizes, and that in phase II (12 K< T <18 K) the magnetic structure is modulated and incommensurate with the lattice spacings. The modulation is close to a pure sine-wave just below T N = 18 K, and it squares up as temperature is lowered. We measured the thermal variations of the first and third harmonics of the moment modulation, and we could determine the first and third harmonics of the exchange coupling. We furthermore show that the antiferromagnetic-incommensurate transition at 12 K is strongly first order, with a hysteresis of 0.05 K, and that the incommensurate-paramagnetic transition at 18 K is weakly first order. Finally, we present an explanation of the spin-flop transition observed in the single crystal magnetisation data in phase III when || in terms of an anisotropic molecular field tensor. Received 17 January 2001 and Received in final form 20 March 2001  相似文献   

19.
We have investigated the quantum J 1 - J 2 - J 3 model on the honeycomb lattice with exact diagonalizations and linear spin-wave calculations for selected values of J 2 / J 1 , J 3 / J 1 and antiferromagnetic (J 1 > 0) or ferromagnetic (J 1 < 0) nearest neighbor interactions. We found a variety of quantum effects: “order by disorder" selection of a Néel ordered ground-state, good candidates for non-classical ground-states with dimer long range order or spin-liquid like. The purely antiferromagnetic Heisenberg model is confirmed to be Néel ordered. Comparing these results with those observed on the square and triangular lattices, we enumerate some conjectures on the nature of the quantum phases in the isotropic models. Received 17 November 2000 and Received in final form 21 January 2001  相似文献   

20.
For many spin systems with constant isotropic antiferromagnetic next-neighbour Heisenberg coupling the minimal energies E min(S) form a rotational band, i.e. depend approximately quadratically on the total spin quantum number S, a property which is also known as Landé interval rule. However, we find that for certain coupling topologies, including recently synthesised icosidodecahedral structures this rule is violated for high total spins. Instead the minimal energies are a linear function of total spin. This anomaly results in a corresponding jump of the magnetisation curve which otherwise would be a regular staircase. Received 27 August 2001 and Received in final form 18 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号