首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This paper develops complex potential formalisms for the solution of the bending problem of inhomogenoeus anisotropic plates, on the basis of the most commonly used refined plate theories. Being an initial step in that direction, it works out such formalisms only in connection with the bending problem of shear deformable homogeneous plates as well as plates having a special type of inhomogeneity along their thickness direction. The adopted type of inhomogeneity is however still general enough to include certain classes of plates made of functionally graded material as well as the classes of cross- and angle-ply symmetric laminates as particular cases. The basic formalism, similar to that developed by Stroh in plane strain elasticity, is detailed in relation with the equilibrium equations of a generalized plate theory that accounts for the effects of transverse shear deformation and includes conventional, refined theories as particular cases. Some interesting specializations, related to the most important of those conventional plate theories, are then presented and discussed separately. Hence, the outlined formalisms provide, for the first time in analytical form, the general solution of the partial differential equations associated with the most commonly used refined, elastic plate theories.  相似文献   

2.
A modified Stroh-type formalism for edge waves in unsymmetrical anisotropic plates is derived. Explicit expressions of the fundamental matrices for the formalism are presented. The existence conditions for one or two subsonic edge waves in the unsymmetrical anisotropic plates are discussed based on the formalism, and a procedure for finding an explicit secular equation for the edge-wave speed is proposed.  相似文献   

3.
4.
An approach is proposed to set up the dispersion equations for surface waves in a periodically stratified half-space contacting with a layer of a perfect compressible liquid. The approach is based on the formalism of periodic Hamiltonian systems. The dispersion equations derived are valid for an arbitrary law of variation in the properties with respect to the coordinate of periodicity. The effects of the liquid layer and the inhomogeneity of the elastic medium on the dispersion spectra of surface waves are studied  相似文献   

5.
An analytical treatment is presented for the propagation of harmonic waves in magneto-electro-elastic multilayered plates, where the general anisotropic and three-phase coupled constitutive equations are used. The state-vector approach is employed to derive the propagator matrix which connects the field variables at the upper interface to those at the lower interface of each layer. The global propagator matrix is obtained by propagating the solution in each layer from the bottom of the layered plate to the top using the continuity conditions of the field variables across the interfaces. From the global propagator matrix, we finally obtain the dispersion relation by imposing the traction-free boundary condition on the top and bottom surfaces of the layered plate. Dispersion curves, modal shapes, and natural frequencies are presented for layered plates made of orthotropic elastic (graphite–epoxy), transversely isotropic PZT-5A, piezoelectric BaTiO3 and magnetostrictive CoFe2O4 materials. While the numerical results show clearly the influence of different stacking sequences as well as material properties on the field response, the general methodology presented in the paper could be useful to the analysis and design of layered composites made of smart piezoelectric and piezomagnetic materials.  相似文献   

6.
Several results are presented concerning symmetry properties of the tensor of third order elastic moduli. It is proven that a set of conditions upon the components of the modulus tensor are both necessary and sufficient for a given direction to be normal to a plane of material symmetry. This leads to a systematic procedure by which the underlying symmetry of a material can be calculated from the 56 third order moduli. One implication of the symmetry conditions is that the nonlinearity parameter governing the evolution of acceleration waves and nonlinear wave phenomena is identically zero for all transverse waves associated with a plane of material symmetry.  相似文献   

7.
滑动界面球形夹杂对平面压缩波的散射   总被引:2,自引:0,他引:2  
余湘彬  仲政  文洁 《力学季刊》2000,21(2):173-178
非理想粘结界面对多相材料力学性能的影响日益受到重视。本文研究了无限各向同性基体中的滑介面球形单夹杂对平面压缩的散射问题。夹杂与基体间的界面为非理想粘结界面,在剪应力的作用下将出现界面两侧相对滑移。假定界面相对滑动位移与界面剪应力成正比,在这种线弹簧型滑动界面条件下,通过波函数的级数展开法,获得了夹杂在基体中反射波和折射波以及应力场的解析表达式,并讨论了界面自由滑动和刚性夹杂等特例。  相似文献   

8.
The problem of flow through a lattice of plates that moves in a plane-parallel subsonic stream of ideal gas with a small velocity inhomogeneity, having a nonpotential character, is solved. It is shown that as this takes place, monochromatic pressure waves are generated, whose frequencies are multiples of the frequency of passage of the plates of the lattice. Analytic expressions for the intensity of these waves and also for the magnitude of the radiated acoustic power and its spectral composition are obtained.Moscow. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 92–100, January–February, 1972.  相似文献   

9.
Shear horizontal (SH) waves in free and clamped monoclinic plates with an arbitrary inhomogeneity across the plate are considered. Firstly, some general properties of dispersion spectra of, specifically, the SH waves are pointed out. Secondly, analytical and numerical modeling of the SH dispersion branches is presented. Closed-form estimations are compared with exact curves computed for a free plate with continuously varying properties.  相似文献   

10.
In the present study, inhomogeneous plane harmonic waves propagation in dissipative partially saturated soils are investigated. The analytical model for the dissipative partially saturated soils is solved in terms of Christoffel equations. These Christoffel equations yields the existence of four wave (three longitudinal and one shear) modes in partially saturated soils. Christoffel equations are further solved to determine the complex velocities and polarizations of four wave modes. Inhomogeneous propagation is considered through a particular specification of complex slowness vector. A finite non-dimensional inhomogeneity parameter is considered to represent the inhomogeneous nature of these four waves. Impact of tortuosity parameter on the movement of pore fluids is considered. Hence, the considered model is capable of describing the wave behavior at high as well as mid and low frequencies. Numerical example is considered to study the effects of inhomogeneity parameter, saturation of water, porosity, permeability, viscosity of fluid phase and wave frequency on the velocity and attenuation of four waves. It is observed that all the waves are dispersive in nature (i.e., frequency dependent).  相似文献   

11.
The interaction between a plane normal shock and ellipsoidal regions of elevated or lowered density in an ideal perfect gas is investigated. Qualitatively different interaction patterns, regular and irregular, are found to exist. It is noted that as a result of the irregular interaction a complicated flow incorporating refracted shocks, tangential discontinuities, and vortices is formed. The effect of shock cumulation on the axis of symmetry occurring outside or inside a gas inhomogeneity of both lowered and elevated density is studied. The qualitative and quantitative influence of the inhomogeneity shape on the cumulation effect is investigated.  相似文献   

12.
By extending the pseudo-Stroh formalism to two-dimensional decagonal quasicrystals, an exact closed-form solution for a simply supported and multilayered two-dimensional decagonal quasicrystal plate is derived in this paper. Based on the different relations between the periodic direction and the coordinate system of the plate, three internal structure cases for the two-dimensional quasicrystal layer are considered. The propagator matrix method is also introduced in order to treat efficiently and accurately the multilayered cases. The obtained exact closed-form solution has a concise and elegant expression. Two homogeneous quasicrystal plates and a sandwich plate made of a two-dimensional quasicrystal and a crystal with two stacking sequences are investigated using the derived solution. Numerical results show that the differences of the periodic direction have strong influences on the stress and displacement components in the phonon and phason fields; different coupling constants between the phonon and phason fields will also cause differences in physical quantities; the stacking sequences of the multilayer plates can substantially influence all physical quantities. The exact closed-form solution should be of interest to the design of the two-dimensional quasicrystal homogeneous and laminated plates. The numerical results can also be employed to verify the accuracy of the solution by numerical methods, such as the finite element and difference methods, when analyzing laminated composites made of quasicrystals.  相似文献   

13.
This study discusses wave propagation in perhaps the most general model of a poroelastic medium. The medium is considered as a viscoelastic, anisotropic and porous solid frame such that its pores of anisotropic permeability are filled with a viscous fluid. The anisotropy considered is of general type, and the attenuating waves in the medium are treated as the inhomogeneous waves. The complex slowness vector is resolved to define the phase velocity, homogeneous attenuation, inhomogeneous attenuation, and angle of attenuation for each of the four attenuating waves in the medium. A non-dimensional parameter measures the deviation of an inhomogeneous wave from its homogeneous version. An numerical model of a North-Sea sandstone is used to analyze the effects of the propagation direction, inhomogeneity parameter, frequency regime, anisotropy symmetry, anelasticity of the frame, and viscosity of the pore-fluid on the propagation characteristics of waves in such a medium.  相似文献   

14.
非线性水波Hamilton系统理论与应用研究进展   总被引:12,自引:0,他引:12  
张宝善  卢东强 《力学进展》1998,28(4):521-531
概述了辛几何理论与辛算法在Hamilton力学中的应用,综述非线性水波的Hamilton理论研究进展.阐述非线性水波Hamilton变分原理与方法的优越性与局限性,探讨KdV方程和BBM方程的Hamilton描述、对称性与守恒律,提出非线性水波Hamilton描述研究中有待进一步研究的问题和解法设想.  相似文献   

15.
In this study, the propagation of an initially plane wave in a linear isotropic nonhomogeneous viscoelastic medium, where the nonhomogeneity varies transversely to the direction of propagation, is investigated. For this purpose, first the propagation of waves in a linear isotropic viscoelastic medium of arbitrary inhomogeneity is studied by employing the notion of singular surfaces. The characteristic equation governing wave velocities, and the growth and decay equations describing the change of the strength of the discontinuity as the wave front moves are obtained.In the second part of this work, the propagation of initially plane waves is studied for three types of inhomogeneities by employing the findings established in the first part. The first kind of inhomogeneity considered is of axisymmetrical type where the wave propagation velocity depends on the radial coordinate only, increasing linearly up to a certain radial distance and remaining constant thereafter. The second kind is also axisymmetrical with a wave velocity distribution decreasing linearly till a given value of the radial coordinate. In the third one, the wave velocity is assumed to vary linearly over a given interval along a certain coordinate axis only, which is perpendicular to the direction of propagation, and remain constant outside. The ray and wave front analyses are carried out and the decay or growth of stress and velocity discontinuities are studied for each of the three cases.  相似文献   

16.
The Christoffel equation is derived for the propagation of plane harmonic waves in a generalized thermoelastic anisotropic (GTA) medium. Solving this equation for velocities implies the propagation of four attenuating waves in the medium. The same Christoffel equation is solved into a polynomial equation of degree eight. The roots of this equation define the vertical slownesses of the eight attenuating waves existing at a boundary of the medium. Incidence of inhomogeneous waves is considered at the boundary of the medium. A finite non-dimensional parameter defines the inhomogeneity of incident wave and is used to calculate its (complex) slowness vector. The reflected attenuating waves are identified with the values of vertical slowness. Procedure is explained to calculate the slowness vectors of the waves reflected from the boundary of the medium. The slowness vectors are used, further, to calculate the phase velocities, phase directions, directions and amounts of attenuations of the reflected waves. Numerical examples are considered to analyze the variations of these propagation characteristics with the inhomogeneity and propagation direction of incident wave. Incidence of each of the four types of waves is considered. Numerical example is also considered to study the propagation and attenuation of inhomogeneous waves in the unbounded medium.  相似文献   

17.
T. C. T. Ting   《Wave Motion》2004,40(4):329-346
The Stroh formalism for surface waves in an anisotropic elastic half-space is extended to the case when the half-space rotates about an axis with a constant rotation rate. The sextic equation for the Stroh eigenvalues, the eigenvectors, the orthogonality and closure relations are obtained. The Barnett–Lothe tensors are no longer real, but two of them are Hermitian. Taziev’s equation is generalized and used to derive the polarization vector and the secular equation without computing the Stroh eigenvalues and eigenvectors. An alternative derivation using the method of first integrals by Mozhaev and Destrade yields new invariants that relate the displacement and stress and are independent of the depth from the free surface. Explicit expression of the polarization vector and the secular equation for monoclinic materials with the symmetry plane at x3 = 0 with the rotation about the x3-axis obtained by Destrade is re-examined, and new results are presented. Also presented is the one-component surface wave in the rotating half-space.  相似文献   

18.
An approach is proposed to set up the dispersion equations for surface waves propagating through a periodically laminated piezoelectric medium, with the upper layer being a perfect compressible fluid. The approach is based on the formalism of Hamiltonian periodic systems. The dispersion equations derived are valid for an arbitrary law of variation in properties with periodicity coordinate. The influence of the liquid layer and inhomogeneity of the piezoelectric medium on the dispersion spectra of surface waves is studied__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 3, pp. 55–61, March 2005.  相似文献   

19.
Weakly non-linear plane waves are considered in hyperelastic crystals. Evolution equations are derived at a quadratically non-linear level for the amplitudes of quasi-longitudinal and quasi-transverse waves propagating in arbitrary anisotropic media. The form of the equations obtained depends upon the direction of propagation relative to the crystal axes. A single equation is found for all propagation directions for quasi-longitudinal waves, but a pair of coupled equations occurs for quasi-transverse waves propagating along directions of degeneracy, or acoustic axes. The coupled equations involve four material parameters but they simplify if the wave propagates along an axis of material symmetry. Thus, only two parameters arise for propagation along an axis of twofold symmetry, and one for a threefold axis. The transverse wave equations decouple if the axis is fourfold or higher. In the absence of a symmetry axis it is possible that the evolution equations of the quasi-transverse waves decouple if the third-order elastic moduli satisfy a certain identity. The theoretical results are illustrated with explicit examples.  相似文献   

20.
This paper describes a semi-analytic approach to problems involving rectangular elastic plates of shallow draft floating on water. Specifically, two problems are considered: the scattering of plane monochromatic incident waves by a single elastic plate and the propagation/attenuation of waves through a periodic rectangular arrangement of plates. The approach combines Fourier methods with Rayleigh–Ritz methods for free modes of rectangular plates which reduces each problem to an algebraic system of equations which are numerically accurate and efficient to compute. A selection of results are given to illustrate the work. The approach can be applied to many problems in hydroelasticity including the seakeeping of large flat-bottomed marine vessels, deflections in very large floating structures such as offshore airports and wave propagation through areas of broken sea ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号