首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relaxation to equilibrium of a spatially uniform pseudo-Maxwellian gas is considered. A modified Wild expansion is defined for solving the nonlinear Boltzmann equation. The positivity and asymptotic conditions, as well as the conservation rules, are maintained at each truncation order. Some particular examples are evaluated. The comparison with exact solutions illustrates the very fast convergence of this method.  相似文献   

2.
We define an integral transform of the energy distribution function for an isotropic and homogeneous diluted gas. It may be interpreted as a linear combination of equilibrium states with variable temperatures. We show that the temporal evolution features of the distribution function are determined by the singularities of this temperature transform. We compare the relaxation to the equilibrium process for Maxwell and very hard-particle interaction models, finding many basic discrepancies. Finally, we formulate an alternative approach, which is given by anN-pole approximation with a clear physical meaning.Fellow of the Conselho Nacional de Desenvolvimento Cientifico e Tecnólogico, Brazil.  相似文献   

3.
An exact solution of the Boltzmann equation for a binary mixture of colored Maxwell molecules is found. The solution corresponds to a nonequilibrium homogeneous steady state created by a nonconservative external force. Explicit expressions for the moments of the distribution function are obtained. By using information theory, an approximate velocity distribution function is constructed, which is exact in the limits of small and large field strengths. Comparison is made between the exact energy flux and the one obtained from the information theory distribution.  相似文献   

4.
We consider the relaxation to equilibrium of a spatially uniform Maxwellian gas. We expand the solution of the nonlinear Boltzmann equation in a truncated series of orthogonal functions. We integrate numerically the equation for non-isotropic initial conditions. For certain simple conditions we find interesting proximity effects and other transient relaxation phenomena at thermal energies. Furthermore, we define a resummation of the orthogonal expansion which is more convenient than the original one for the numerical analysis of the relaxation process.  相似文献   

5.
In this paper, we provide a set of sufficient conditions under which a lattice Boltzmann model does not admit an H theorem. By verifying the conditions, we prove that a number of existing lattice Boltzmann models does not admit an H theorem. These models include D2Q6, D2Q9 and D3Q15 athermal models, and D2Q16 and D3Q40 thermal (energy-conserving) models. The proof does not require the equilibria to be polynomials.  相似文献   

6.
An existence and uniqueness result for the homogeneous Boltzmann hierarchy is proven, by exploiting the statistical solutions to the homogeneous Boltzmann equation.  相似文献   

7.
In this paper, we present the construction of the Lattice Boltzmann method equipped with the H-theorem. Based on entropy functions whose local equilibria are suitable to recover the Navier–Stokes equations in the framework of the Lattice Boltzmann method, we derive a collision integral which enables simple identification of transport coefficients, and which circumvents construction of the equilibrium. We discuss performance of this approach as compared to the standard realizations.  相似文献   

8.
We construct anH-function suitable for a system of dense hard spheres satisfying the (modified) nonlinear Enskog equation and we show that t H 0. The equality sign holds only when the system has reached absolute equilibrium, in which caseS=– kB H becomes the exact equilibrium entropy of the hard-sphere fluid.  相似文献   

9.
10.
The linear and nonlinear Boltzmann equation for very hard particles (VHP) is considered in the case when the collision between two particles may lead not only to elastic scattering, but also to a removal event with the disappearance of the molecules. The extended transport equation is solved for arbitrary initial distributions. The computations are carried out explicitly for a special class of initial distributions and for various removal rates. The results are demonstrated graphically. Finally, source terms fulfilling physically reasonable conditions are introduced into the VHP model, and the time-dependent particle number is calculated.  相似文献   

11.
For the Enskog equation in a box an existence theorem is proved for initial data with finite mass, energy, and entropy. Then, by letting the diameter of the molecules go to zero, the weak convergence of solutions of the Enskog equation to solutions of the Boltzmann equation is proved.  相似文献   

12.
The Bobylev approach to the nonlinear Boltzmann equation is reviewed. The linearized problem is discussed and it is shown that eigenfunctions decaying like a negative power of the velocity are possible with Maxwell molecules only. The relaxation to equilibrium according to the nonlinear equation is discussed and the Krook-Wu conjecture on the status of the BKW mode is shown to be false in general. The buildup of the high-energy tails is considered and a phenomenon observed by Tjon is given a simple explanation. Finally, the method is illustrated with numerical calculations performed for two sets of initial conditions.  相似文献   

13.
A generalization of the Poisson–Boltzmann equation solution has been obtained as a function of a single parameter that is only temperature and concentration dependent. This new solution improves the analytical expressions for the surface charge density/surface potential relationship stated by other authors and shows excellent agreement with the exact numerical values obtained by Loeb, Overbeek and Wiersema [The Electrical Double Layer Around a Spherical Colloidal Particle, MIT Press, Cambridge, MA, 1961].  相似文献   

14.
Exact Eternal Solutions of the Boltzmann Equation   总被引:1,自引:0,他引:1  
We construct two families of self-similar solutions of the Boltzmann equation in an explicit form. They turn out to be eternal and positive. They do not possess finite energy. Asymptotic properties of the solutions are also studied.  相似文献   

15.
The one-dimensional linear homogeneous Boltzmann equation is solved for a binary mixture of quasi-Maxwellian particles in the presence of a time-dependent external field. It is assumed that the charged particles move in a bath of neutral scatterers. The neutral scatterers are in thermal equilibrium and the concentration of the charged particles is low enough to neglect collisions between them. Two cases are considered in detail, the constant and the periodic external field. The quantities calculated are the equilibrium and the stationary distribution function, respectively, from which any desired property can be derived. The solution of the Boltzmann equation for Maxwellian particles can be reduced to the solution of the so-called cold gas equation by employing the one-dimensional variant of a convolution theorem due to Wannier. The two limiting cases, the Lorentz gas (m A0) and the Rayleigh gas (m A) are treated explicitly. Furthermore, by computing the central moments, the deviations from the Gaussian approximation are discussed, and in particular the large-velocity tails are evaluated.  相似文献   

16.
A model recently introduced by Ianiro and Lebowitz is shown to have a global solution for initial data having a finiteH-functional and belonging toL 1 (L x ). Methods previously introduced by Tartar to deal with discrete velocity models are used.  相似文献   

17.
Proof is given of the existence of a classical solution to the nonlinear Boltzmann equation in allR 3. The solution, which is global in time, exists if the initial data go to zero fast enough at infinity and the mean free path is sufficiently large. The solution is smooth in the space variable if the initial value is smooth. The asymptotic behavior of solutions is also given. It is shown that ast the solution to the Boltzmann equation can be approximated by the solution to the free motion problem.  相似文献   

18.
The Nikolskii transform makes it possible to construct inhomogeneous solutions of the Boltzmann equation from homogeneous ones. These solutions correspond to a gas in expansion, but if we introduce external forces, they can relax toward absolute Maxwellians. This property holds independently of the assumed intermolecular inverse power force. Consequently, for Maxwell molecules and from energy-dependent homogeneous distributions, we construct effectively a class of inhomogeneous similarity distributions with Maxwellian equilibrium relaxation. We review and investigate again the homogeneous distributions which can be written in closed form, for instance, we show that an elliptic exact solution proposed some years ago violates positivity. For Maxwell interaction with singular cross sections, we numerically construct inhomogeneous distributions having Maxwellian equilibrium states and study the Tjon overshoot effect. We show that both the sign and the time decrease of the external force as well as the microscopic model of the cross section contribute to the asymptotic behavior of the distribution. These inhomogeneous similarity solutions include a class of distributions that asymptotically oscillate between different Maxwellians. Two classes of external forces are considered: linear spatial-dependent forces or linear velocity-dependent forces plus source term.  相似文献   

19.
Cercignani, Greenberg, and Zweifel proved the existence and uniqueness of solutions of the Boltzmann equation on a toroidal lattice under the assumption that the collision kernel is bounded. We give an alternative, considerably simpler, proof which is based on a fixed point argument.  相似文献   

20.
This paper considers the linear space-inhomogeneous Boltzmann equation in a convex, bounded or unbounded bodyD with general boundary conditions. First, mildL 1-solutions are constructed in the cutoff case using monotone sequences of iterates in an exponential form. Assuming detailed balance relations, mass conservation and uniqueness are proved, together with anH-theorem with formulas for the interior and boundary terms. Local boundedness of higher moments is proved for soft and hard collision potentials, together with global boundedness for hard potentials in the case of a nonheating boundary, including specular reflections. Next, the transport equation with forces of infinite range is considered in an integral form. Existence of weakL 1-solutions are proved by compactness, using theH-theorem from the cutoff case. Finally, anH-theorem is given also for the infinite-range case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号