首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theoretical analysis is made of the effect of analytical line broadening and of non-absorbable radiation in the light source on the shape of concentration curves in Zeeman graphite furnace atomic absorption spectrometry. These results have been used in a systematic study of the effect of spectrometer slit width and hollow-cathode lamp (HCL) current on linearization of calibration graphs for 11 elements: Ag, Au, Bi, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Sb. The effectiveness of linearization throughout the analytical range covered was estimated experimentally on series of 25–30 solutions. Three solutions in each series were used as standards for constructing the calibration graph, the others serving to evaluate the linearization effectiveness. Increasing the slit width and decreasing the HCL current compared to the standard measurement conditions have permitted us to reach a sufficiently high effectiveness of linearization for all the elements studied, with the exception of Ni. The maximum deviation of experimental points from the linear graph under optimum conditions does not exceed 6%. The effect of the Δ parameter used in the computational algorithm on linearization effectiveness is investigated.  相似文献   

2.
石墨炉原子吸收法测定石脑油中微量砷   总被引:2,自引:0,他引:2  
试样用四氢呋喃(THF)有机溶剂稀释,以硝酸镍为基体改进剂,研究采用石墨炉原子吸收法直接进样测定石脑油中的砷量。研究表明,砷量在0~50μg/L范围内线性关系良好,回收率93%~104%。  相似文献   

3.
A microwave digestion method for the determination of marine biological tissues has been developed to allow determination of selenium in small sample sizes (< 0.1 g). The benefits of this technique include maintaining concentrates in extracts without the subsequent over dilution encountered when using larger vessels, increased sample throughput and reduced loss of volatile material. Freeze dried biological material (< 0.1 g) and nitric acid (1 ml) were placed into 7 ml screw top Teflon vessels which are completely sealed on capping. Two 7 ml vials were placed into larger 120 ml vessels fitted with a Teflon spacer and 10 ml of distilled water. The effects of microwave power and time, and sample mass on selenium recovery from three marine standard reference materials (NIST SRM 1566a Oyster Tissue, NRCC DORM-1 Dogfish Muscle and NRCC TORT-1 Lobster Hepatopancreas) were examined. The optimum conditions: 600 W, 2 min; 0 W, 2 min; 450 W, 45 min, allowed quantitative recoveries of selenium from these and three other standard reference materials (NRCC DOLT-1 Dogfish liver, NIST RM-50 Albacore tuna and IAEA MA-A-2 fish flesh). Studies on sample mass showed that the analysis of sample masses from 0.025 to 0.1 g gave selenium concentrations within the certified range. Six species of selenium: selenite, selenate, selenomethionine, selenocysteine, selenocystamine, and trimethyl selenonium were added to oyster, dogfish, and lobster tissues. Recoveries were near quantitative for all species (94–105%) except trimethyl selenonium (90–101%).  相似文献   

4.
采用石墨炉原子吸收光谱法测定茶叶中铅,以NH4H2PO4作为基体改进剂,提高了测定的灰化温度,消除了基体干扰.方法简便,快速,准确度高.通过对标准物质的多次测定,结果均在其保证值范围内,相对标准偏差为2.8%.对样品进行加标回收试验,回收率为96%~105%,方法检出限为0.12μg/L.  相似文献   

5.
利用高灵敏的石墨炉原子吸收法,在V(HCl):V(HNO3):V(H2O)=5:1:94混合酸介质中测定苯基丙烯酸酯类化合物中的钯量.已纯化样品钯量的平均值是6.76 μg/g,标准相对偏差是4.8%,平均回收率为99.3%;未纯化样品钯量的平均值是121.2 μg/g,平均相对偏差是5.4%.还讨论酸介质对测定钯吸光度的影响,通过比较找到了合适的酸介质组成.  相似文献   

6.
An oil-in-water formulation has been optimized to determine trace levels of selenium in whole hen eggs by graphite furnace atomic absorption spectrometry. This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures. Graphite furnace atomic absorption spectrometric (GF AAS) measurement was carried out using standard addition calibration and Pd as a modifier. The precision, expressed as relative standard deviation, was better than 5% and the limit of detection was 1 µg L− 1. The validation of the method was performed against a standard reference material Whole Egg Powder (RM 8415), and the measured Se corresponded to 95.2% of the certified value. The method was used for the determination of the Se level in eggs from hens treated with Se dietary supplements. Inorganic and organic Se sources were added to hen feed. The Se content of eggs was higher when hens were fed with organic Se compared to the other treatments. The proposed method, including sample emulsification for subsequent Se determination by GF AAS has proved to be sensitive, reproducible, simple and economical.  相似文献   

7.
The present work evaluated the use of iridium (Ir) as permanent modifier for the determination of total selenium in urine and serum by graphite furnace atomic absorption spectrometry. Concerning urine, the presence of trimethylselenonium (TMSe+) was especially considered. Pyrolysis and atomization temperatures of 1,000 and 2,100°C, respectively, were used. For nondigested urine and serum samples, 0.2% v/v HNO3 and Triton X-100 were used as diluents, respectively, and the same initial platform Ir treatment was effective for up to 1,100 atomization cycles. Good precision [less than 5% relative standard deviation (RSD)] can be achieved with the proposed method. Low TMSe+ recovery was observed for nondigested urine samples. Thus, if this species is to be considered in urine analysis, a previous external mineralization step was found to be necessary. Alternatively, an in situ oxidation treatment was developed. Detection limits of 8, 10, and 7 μg l−1 were obtained after dilution, microwave-assisted digestion, and in situ oxidation procedures, respectively. The accuracy of the method was validated by the analysis of certified reference or commercial quality control materials and spiked samples.  相似文献   

8.
A simple and powerful microextraction technique was used for determination of selenium in water samples using dispersive liquid-liquid microextraction (DLLME) followed by graphite furnace atomic absorption spectrometry (GF AAS). DLLME and simultaneous complex formation was performed with rapid injection of a mixture containing ethanol (disperser solvent), carbon tetrachloride (extraction solvent) and ammonium pyrrolidine dithiocarbamate (APDC, chelating agent) into water sample spiked with selenium. After centrifuging, fine droplets of carbon tetrachloride, which were dispersed among the solution and extracted Se-APDC complex, sediment at the bottom of the conical test tube. The concentration of enriched analyte in the sedimented phase was determined by iridium-modified pyrolitic tube graphite furnace atomic absorption spectrometry. The concentration of selenate was obtained as the difference between the concentration of selenite after and before pre-reduction of selenate to selenite. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of chelating agent were optimized. Under the optimum conditions, the enrichment factor of 70 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 0.1-3 μg L− 1 with detection limit of 0.05 μg L− 1. The relative standard deviation (RSDs) for ten replicate measurements of 2.00 μg L− 1 of selenium was 4.5%. The relative recoveries of selenium in tap, river and sea water samples at spiking level of 2.00 μg L− 1 were 106, 96 and 98%, respectively.  相似文献   

9.
Yang LL  Zhang DQ 《Talanta》2002,56(6):12-1129
A method has been described for the direct determination of trace levels of germanium by graphite furnace atomic absorption spectrometry (GFAAS) using chemical matrix modification technique. The stabilization and the pyrolysis temperatures for germanium were investigated with various chemical modifiers including palladium, palladium–magnesium, palladium–strontium and palladium–zirconium. The highest pyrolysis temperature and highest integrated absorbance were obtained using palladium–zirconium modifier, and the severe matrix interference from sulfate can be eliminated. The characteristic mass and absolute detection limit (3σ) of germanium were found to be 16 and 12 pg, respectively. The proposed method was applied to the determination of trace levels of germanium in botanical samples with a recovery range of 92–106%. The hydride generation atomic fluorescence spectrometric (HGAFS) method was employed to analyze the samples and the results agree well with those obtained by GFAAS. The contents of germanium in standard reference materials were determined and the results were in good agreement with the reference values.  相似文献   

10.
M. Tuzen  M. Soylak 《Talanta》2007,71(1):424-429
A simple and economic separation and speciation procedure for selenium in food and water samples have been presented prior to its graphite furnace atomic absorption spectrometry (GFAAS). Magnesium hydroxide coprecipitation system for selenium(IV) was applied to the separation and speciation of selenium ions. The influences of the various analytical parameters for the quantitative recoveries of selenium ions like pH, amounts of magnesium ions as carrier elements, etc. on were examined. The effects of the alkaline and earth alkaline metals, some transition metals and some anions on the recoveries of selenium(IV) were also investigated. The recoveries of analytes were found greater than 95%. No appreciable matrix effects were observed. The detection limit, defined as three times the blank standard deviation (3σ), was 0.030 μg l−1. The preconcentration factor for the presented system was 25. The proposed method was applied to the speciation of selenium(IV), selenium(VI) and determination of total selenium in natural waters and microwave digested various food samples with satisfactory results. The procedure was validated with certified reference materials. The relative errors and relative standard deviations were below 6% and 10%, respectively.  相似文献   

11.
Pei Liang  Ehong Zhao  Feng Li 《Talanta》2009,77(5):1854-1857
A new method for the determination of palladium was developed by dispersive liquid-liquid microextraction preconcentration and graphite furnace atomic absorption spectrometry detection. In the proposed approach, diethyldithiocarbamate (DDTC) was used as a chelating agent, and carbon tetrachloride and ethanol were selected as extraction and dispersive solvent. Some factors influencing the extraction efficiency of palladium and its subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent and extraction time, were studied and optimized. Under the optimum conditions, the enrichment factor of this method for palladium reached at 156. The detection limit for palladium was 2.4 ng L−1 (3σ), and the relative standard deviation (R.S.D.) was 4.3% (n = 7, c = 1.0 ng mL−1). The method was successfully applied to the determination of trace amount of palladium in water samples.  相似文献   

12.
This work shows the potentiality of As as internal standard to compensate errors from sampling of sparkling drinking water samples in the determination of selenium by graphite furnace atomic absorption spectrometry. The mixture Pd(NO3)2/Mg(NO3)2 was used as chemical modifier. All samples and reference solutions were automatically spiked with 500 μg l−1 As and 0.2% (v/v) HNO3 by the autosampler, eliminating the need for manual dilutions. For 10 μl dispensed sample into the graphite tube, a good correlation (r=0.9996) was obtained between the ratio of analyte absorbance by the internal standard absorbance and the analyte concentrations. The relative standard deviations (R.S.D.) of measurements varied from 0.05 to 2% and from 1.9 to 5% (n=12) with and without internal standardization, respectively. The limit of detection (LD) based on integrated absorbance was 3.0 μg l−1 Se. Recoveries in the 94-109% range for Se spiked samples were obtained. Internal standardization (IS) improved the repeatability of measurements and increased the lifetime of the graphite tube in ca. 15%.  相似文献   

13.
The study was performed to compare the effect of magnesium modifier (magnesium nitrate) with that of other modifiers (palladium nitrate and nickel nitrate) in determination of arsenic, antimony and selenium by atomic absorption spectroscopy with atomization in a graphite tube, with generation of hydrides and in situ preconcentration in a graphite tube. The assumed criterion of a modifier performance was the magnitude of the analytical signal. It was found that in determinations with atomization in a graphite furnace the effects of all these modifiers were comparable, while in those with hydride generation and in situ preconcentration in a graphite tube the magnesium modifier showed poorer performance (25% decrease of the analytical signal). In determinations of arsenic and selenium the analytical signal obtained with magnesium salt as a modifier was comparable with those obtained in the presence of all other modifiers.  相似文献   

14.
The determination of trace elements in crude oil is difficult due to the complex nature of the sample and the various different chemical forms in which the metals can occur. The advantage of graphite furnace atomic absorption spectrometry is that only a minimum of sample pretreatment is required. In this work two techniques have been compared to establish a fast and reliable method for lead determination in crude oil. In the first one the crude oil samples were weighed directly onto solid sampling (SS) platforms and introduced into the graphite tube for analysis. In the second one the samples were prepared as oil-in-water emulsions and analyzed in a filter furnace (FF). Twenty μL of a mixture of 0.5 mg L− 1 Pd + 0.3 mg L− 1 Mg + Triton X-100 has been used as the modifier, and calibration against aqueous solutions has been used for both methods. The sensitivity obtained with the FF was more than a factor of two better than that with SS; however, as a larger sample mass could be introduced in the latter case, so that the limits of detection for both techniques were 0.004 mg kg− 1. Seven crude oil samples were analyzed using the two procedures, and all results were in agreement at a 95% confidence level using a paired Student's t-test. For validation purposes, three crude oil samples have been mineralized using an open-vessel acid digestion, and the results were in agreement with those found with direct sampling and with emulsion sampling using FF according to ANOVA test. Both methods are simple, fast and reliable, being appropriated for routine analysis; however, the direct method using SS technology should be preferred because of its simplicity, speed and commercial availability.  相似文献   

15.
Rojas FS  Ojeda CB  Pavón JM 《Talanta》2006,70(5):979-983
A flow injection (FI) system was used to develop an efficient on-line sorbent extraction preconcentration system for palladium by graphite furnace atomic absorption spectrometry (GFAAS). The investigated metal was preconcentrated on a microcolumn packed with 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). The palladium is eluted with 40 μl of HCl 4 M and directly introduced into the graphite furnace. The detection limit for palladium under the optimum conditions was 0.4 ng ml−1. This procedure was employed to determine palladium in different samples.  相似文献   

16.
In the present work the performance of different platform and tube geometries and atomization temperatures in graphite furnace atomic absorption spectrometry was investigated, using the determination of Cd in whole blood as an example. Grooved, integrated and fork platforms as well as atomization temperatures between 1200 °C and 2200 °C were investigated in a longitudinally heated graphite atomizer and compared with the performance of a transversely heated furnace. In the longitudinally heated furnace the increase of the atomization temperature in the studied range resulted in an increase of matrix effects for all platform geometries. The integrated platform exhibited slightly lower sensitivity and increased multiplicative interferences in comparison to the other two platform designs. Interference-free Cd determination was possible with all types of platforms and 1200 °C as the atomization temperature as well as with grooved and fork platforms at 1700 °C. On the other hand, lower atomization temperatures resulted in poorer limits of detection, due to the longer integration time needed. No matrix effect was observed at any atomization temperature using the transversely heated atomizer; in addition, limits of detection were better than those observed with the longitudinally heated atomizer. Best values were around 0.02 μg L− 1 with the latter atomizer compared to values around 0.02 μg L− 1 with the former one.  相似文献   

17.
石墨炉原子吸收法测定肼类推进剂中九种金属杂质   总被引:1,自引:0,他引:1  
建立了石墨炉原子吸收法测定肼类推进剂中锌、铁、铬、锰、铅、镍、铝、铜、钛等金属含量的检测方法 ,无需样品预处理过程 ,灵敏度高且快速、准确。各元素测定方法的精密度小于 1 0 % ,回收率在 82 %~ 1 1 6%之间。  相似文献   

18.
A procedure for the determination of As in diesel, gasoline and naphtha at μg L−1 levels by GFAAS is proposed. Sample stabilization was achieved by the formation of three component solutions prepared by mixing appropriate volumes of the samples propan-1-ol and nitric acid aqueous solution. This mixture resulted in a one-phase medium, which was indefinitely stable. No changes in the analyte signals were observed over several days in spiked samples, proving long-term stabilization ability. The use of conventional (Pd) and permanent (Ir) modification was investigated and the former was preferred. Central composite design multivariate optimization defined the optimum microemulsion composition as well as the temperature program. In this way, calibration using aqueous analytical solutions was possible, since the same sensitivity was observed in the investigated microemulsion media and in 0.2% v/v HNO3. Coefficients of correlation larger than 0.999 and an As characteristic mass of 22 pg were observed. Recoveries (n=4) obtained from spiked samples were 98±4, 99±3 and 103±5%, and the limits of detection in the original samples were 1.8, 1.2 and 1.5 μg L−1 for diesel, gasoline and naphtha, respectively. Validation was performed by the analysis of a set of commercial samples by independent comparative procedures. No significant difference (Student’s t-test, p<0.05) was observed between comparative and proposed procedure results. The total determination cycle lasted 4 min for diesel and 3 min for gasoline and naphtha, equivalent to a sample throughput of 7 h−1 for diesel and 10 h−1 for gasoline and naphtha.  相似文献   

19.
A new and simple method was developed for preconcentration trace amount of gold in aqueous and mineral samples. The method was based on the sorption of gold on granular activated carbon (AC) in acidic medium (hydrochloric acid) and subsequently direct determination by graphite furnace atomic absorption spectrometry (GFAAS). A small particle of adsorbent was delivered to small volume of sample. After extraction, AC removed and analyzed directly by GFAAS. Several factors influencing the extraction efficiency, such as the hydrochloric acid concentration, sample volume and extraction time were studied as well as effect of potential interfering ions. The preconcentration factor 50 was obtained. The limit of detection (LOD) of gold in water and soil samples was 0.007 μg L− 1 and 0.9 ng g− 1, respectively. The proposed method was applied successfully to the determination of trace amount of gold in environmental and geological samples. In order to validate the developed method, two certified reference materials: Platinum Ore (SARM-7B) and Copper Ore Mill Heads (No. 330) were analyzed and the determined values obtained were in good agreement with the certified values and recovery was obtained in the range of 80-118%. The relative standard deviations (RSD) for the spiking levels of 0.5 μg L− 1 in the real samples was 4%, (n = 15).  相似文献   

20.
Generation of mercury vapor by ultraviolet irradiation of mercury solutions in low molecular weight organic acid solutions prior to measurement by Atomic Absorption Spectrometry is a cheap, simple and green method for determination of trace concentrations of mercury. In this work mercury vapor generated by ultraviolet photolysis was trapped onto a palladium coated graphite furnace significantly improving the detection limit of the method. The system was optimized and a detection limit of 0.12 µg L− 1 (compared to 2.1 µg L− 1 for a previously reported system in the absence of trapping) with a precision of 11% for a 10 µg L− 1 mercury standard (RSD, N = 5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号