首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2-quinolylcarbene 23 and 1-isoquinolylcarbene 33 are generated by flash vacuum thermolysis (FVT) of the corresponding triazolo[1,5-a]quinoline and triazolo[5,1-a]isoquinoline 19 and 29, as well as 2-(5-tetrazolyl)quinoline and 1-(5-tetrazolyl)isoquinoline 20 and 30, respectively. These carbenes rearrange to 1- and 2-naphthylnitrene 21 and 31, respectively, and the nitrenes are also generated by FVT of 1- and 2-naphthyl azides 18 and 28. The products of FVT of both the nitrene and carbene precursors are the 2- and 3-cyanoindenes 26 and 27 together with the nitrene dimers, viz. azonaphthalenes 25 and 35, and the H-abstraction products, aminonaphthalenes 24 and 34. All the azide, triazole, and tetrazole precursors yield 3-cyanoindene 26 as the principal ring contraction product under conditions of low FVT temperature (340-400 degrees C) and high pressure (1 Torr N(2) as carrier gas for the purpose of collisional deactivation). This ring contraction reaction is strongly subject to chemical activation, which caused extensive isomerization of 3-cyanoindene to 2-cyanoindene under conditions of low pressure (10(-3) Torr). 2-Cyanoindene is calculated to be ca. 1.7 kcal/mol below 3-cyanoindene in energy; accordingly, high-temperature FVT of these cyanoindenes always gives mixtures of the two compounds with the 2-cyano isomer dominating. Photolysis of trizolo[1,5-a]quinoline 19 and triazolo[5,1-a]isoquinoline 29 in Ar matrixes causes partial ring opening to the corresponding 2-diazomethylquinoline 19' and 1-diazomethylisoquinoline 29'. The photolysis of the former gives rise to a small amount of the cyclic ketenimine 22, the intermediate connecting 2-quinolylcarbene and 1-naphthylnitrene.  相似文献   

2.
1‐Acetylirrüno‐3‐methyl‐1H‐isochromene‐4‐carbonitrile, 1 , reacts with glycine ethyl ester under basic conditions to give an imidazo[2,1‐a]isoquinoline derivative, while reaction with hydrazine hydrate in 1,4‐dioxane, with further chemistry, provides access to [1,2,4]triazolo[5,1‐a]isoquinoline, [1,2,4]triazolo[3,4‐a]isoquinoline and tetrazolo[5,1‐a]isoquinoline analogs. Benzene ring nitration and radical bromination of substituent methyl groups were investigated in the four tricycles, with some different positional reactivities being found. Two bromomethyl derivatives so produced were oxidised; ethyl 2‐bromomethyl‐6‐cyano‐5‐methylimidazo[2,1‐a]isoquinoline‐3‐carboxylate gave the anticipated ethyl 6‐cyano‐2‐formyl‐5‐methylimidazo[2,1‐a]isoquinoline‐3‐carboxylate (which reacted further with hydrazine to form a new system, 8,9‐dihydro‐6‐methyl‐8‐oxopyridazino[4′,5′:4,5]imidazo[2,1‐a]isoquinoline‐5‐carbonitrile), while 5‐bromomethyl‐2‐methyl[1,2,4]triazolo[5,1‐a]isoquinoline‐6‐carbonitrile unexpectedly gave directly another new system, 5,6‐dihydro‐5‐hydroxy‐2‐methyl‐7H‐pyrrolo[3,4‐c][1,2,4]triazolo[5,1‐a]isoquinolin‐7‐one.  相似文献   

3.
Under aqueous conditions, 4-azidouracil/tetrazolo[1,5-c]pyrimidin-5(6H)-one nucleosides undergo a very efficient photochemical nitrogen elimination and ring expansion to 1,3,5-triazepin-2,4-dione nucleosides whose structure has been confirmed by X-ray crystallography. In contrast, when the photolysis was attempted under anhydrous conditions in the presence of a nucleophile, a ring contraction reaction occurred, affording 2-oxoimidazolone nucleosides. A mechanism to account for the formation of ring expansion and contraction reactions and involving a carbodiimide intermediate is proposed which is reminiscent of the known photochemical behavior of 2-azidopyridines/tetrazolo[1,5-a]pyridines.  相似文献   

4.
Several tetrazolo[1,5-a]pyridines/2-azidopyridines undergo photochemical nitrogen elimination and ring expansion to 1,3-diazacyclohepta-1,2,4,6-tetraenes, as well as ring cleavage to cyanovinylketenimines, in low temperature Ar matrices. 6,8-Dichlorotetrazolo[1,5-a]pyridine/2-azido-3,5-dichloropridine undergoes ready exchange of the chlorine in position 8 (3) with ROH/RONa. 8-Chloro-6-trifluoromethyltetrazolo[1,5-a]pyridine undergoes solvolysis of the CF(3) group to afford 8-chloro-6-methoxycarbonyltetrazolo[1,5-a]pyridine. Several tetrazolopyridines/2-azidopyridines afford 1H- or 5H-1,3-diazepines in good yields on photolysis in the presence of alcohols or amines. 5-Chlorotetrazolo[1,5-a]pyridines/2-azido-6-chloropyridines and undergo a rearrangement to 1H- and 3H-3-cyanopyrroles and, respectively. The mechanism of this rearrangement was investigated by (15)N-labelling and takes place via transient 1,3-diazepines. The structures of 6,8-dichloro-tetrazolo[1,5-a]pyridine, 6-chloro-8-ethoxytetrazolo[1,5-a]pyridine, dipyrrolylmethane, and 2-isopropoxy-4-dimethylamino-5H-1,3-diazepine were determined by X-ray crystallography. In the latter case, this represents the first reported X-ray crystal structure of a 5H-1,3-diazepine.  相似文献   

5.
Tetrazolo[1,5-a]pyrazine/2-azidopyrazine 9T/9A undergo photolysis in Ar matrix at cryogenic temperatures to yield 1,3,5-triazacyclohepta-1,2,4,6-tetraene 21 as the first observable intermediate, and 1-cyanoimidazole 11 and (2-isocyanovinyl)carbodiimide 22 as the final products. The latter tautomerizes to 2-(isocyanovinyl)cyanamide 23 on warming to 40 K. The same intermediate 21 and the same final products are obtained on matrix photolysis of the isomeric tetrazolo[1,5-c]pyrimidine/4-azidopyrimidine 24T/24A. These photolysis results as well as those of the previously reported thermal ring contraction of (15)N-labeled 2-pyrazinyl- and 4-pyrimidylnitrenes to 1-cyanoimidazoles can all be rationalized in terms of selective ring opening of 21 or nitrine 10 to a nitrile ylide zwitterion 28 prior to formation of the final products, 11 and 22. The results are supported by high-level ab initio and DFT calculations (CASPT2-CASSCF(6,6), G3(MP2), and B3LYP/6-31+G) of the energies and IR spectra of the intermediates and products.  相似文献   

6.
Azo coupling of 1,3‐dicarbonyl compounds with tetrazolyl‐5‐diazonium chloride is used to develop a convenient one‐step procedure for the synthesis of 4,7‐dihydrotetrazolo[5,1‐c][1,2,4]triazines. In contrast to nonfluorinated analogs, 7‐hydroxy‐7‐polyfluoroalkyl‐4,7‐dihydrotetrazolo[5,1‐c][1,2,4]triazines undergo a ring‐chain isomerism resulting from the cleavage at the C7―N7a bond. A distinctive feature of nonfluorinated 4,7‐dihydrotetrazolo[5,1‐c][1,2,4]triazines is the possibility to dehydration, which is accompanied by an azide rearrangement due to the tetrazole ring cleavage with the formation of tetrazolo[1,5‐b][1,2,4]triazines.  相似文献   

7.
Tetrazolo[1,5-a]quinazoline (9) is converted to 2-azidoquinazoline (10) on sublimation at 200 degrees C and above, and the azide-tetrazole equilibrium is governed by entropy. 2-Quinazolylnitrenes 11 and 27 and/or their ring expansion products 14 and 29 can undergo type I (ylidic) and type II (diradicaloid) ring opening. Argon matrix photolysis of 9/10 affords 2-quinazolylnitrene (11), which has been characterized by ESR, UV, and IR spectroscopy. A minor amount of a second nitrene, formed by rearrangement or ring opening, is also observed. A diradical (19) is formed rapidly by type II ring opening and characterized by ESR spectroscopy; it decays thermally at 15 K with a half-life of ca. 47 min, in agreement with its calculated facile intersystem crossing (19T --> 19OSS) followed by facile cyclization/rearrangement to 1-cyanoindazole (21) (calculated activation barrier 1-2 kcal/mol) and N-cyanoanthranilonitrile (22). 21and 22 are the isolated end products of photolysis. 21 is also the end product of flash vacuum thermolysis. An excellent linear correlation between the zero-field splitting parameter D (cm(-1)) and the spin density rho on the nitrene N calculated at the B3LYP/EPRIII level is reported (R2 = 0.993 for over 100 nitrenes). Matrix photolysis of 3-phenyltetrazolo[1,5-a]quinazoline (25) affords the benzotriazacycloheptatetraene 29, which can be photochemically interconverted with the type I ring opening product 2-isocyano-alpha-diazo-alpha-phenyltoluene (33) as determined by IR and UV spectroscopy. The corresponding carbene 37, obtained by photolysis of 33, was detected by matrix ESR spectroscopy.  相似文献   

8.
以廉价易得的2,6-二氯吡啶为原料,经过硝化、叠氮化、热解环化步骤得到中间体[1,2,5]噁二唑并[3,4-e]四唑并[1,5-a]吡啶-3-氧化物(4b),再与浓硫酸/硝酸钾、甲醇钠和甲胺水溶液反应分别得到5-取代的氧化呋咱并[3,4-b]吡啶衍生物5~7。 研究了化合物4b结构的稳定性,发现其中的氧化呋咱环在强酸性、强碱性和弱碱性条件下较稳定,而吡啶环与叠氮基形成的四唑环结构则不太稳定。  相似文献   

9.
Dilithio-tosylmethyl isocyanide (2) reacts with the carbonyl of unsaturated esters to form oxazoles, unlike tosylmethyl isocyano monoanion which gives pyrroles by reaction with the conjugated carbon-carbon double bonds. Reaction of 2 with carbon-nitrogen multiple bonds leads to imidazoles, an example of which is the one-step synthesis of imidazo[5,1-a]isoquinoline from isoquinoline. From 2 and pyridine-N-oxide or pyridazine-N-oxide unsaturated ring opened products are obtained.  相似文献   

10.
Phenothiazinyldienes obtained from tetrazolopyridinium salts and phenothiazine derivatives were subjected to reduction by borane-dimethyl sulfide in THF. Structure elucidation of the products revealed that one of the olefinic bond underwent reduction and, furthermore, borane addition at the double bond took place to yield derivatives of tetrazolo[5,1-f][1,2]azaborinin as a new fused ring system involving a bridge-head nitrogen atom. The new products have been synthesized and characterized by X-ray analysis, solution and solid-state NMR.  相似文献   

11.
Photolysis of 3-pyridyldiazomethane in an Ar matrix at 7-10 K gives 3-pyridylcarbene. Further photolysis causes ring opening to nitrile ylide 26 (formonitrile pent-2-en-4-ynylide) as the major reaction together with a minor amount of ring expansion to 1-azacyclohepta-1,3,4,6-tetraene, 27. Matrix photolysis of 3-azidopyridine leads to ring opening to formonitrile N-cyanovinylmethylide, 33.  相似文献   

12.
The nucleophilic ring opening of the isoxazolone ring in 2-oxo-3-phenylisoxazolo[2,3-a]pyrimidine derivatives by optically active amino acid amides and ephedrine led to pyrimidinylmethylamino acid amides. Using amides of different L-amino acids and (-)-ephedrine resulted in different degrees of stereoselectivity. The degree of streoselectivity depended mostly on the nucleophile used. When applying hydroxy amines such as ephedrine, the attack via the secondary amino group was found as the favored regioselectivity. Upon replacement of the oxo group in position 2 in the phenylisoxazolo[2,3-a]pyrimidine system by an imino group, it was expected that the spontaneous decarboxylation that follows the ring opening would not take place, thus achieving amino acid amide derivatives of 2-pyrimidinylacetamide, which are closely related to pyrimidoblamic acid, an important constituent of Bleomycins, used in cancer therapy. However, by heating 5,7-dimethyl-2-imino-3-phenylisoxazolo[2,3-a]pyrimidine in solution, it underwent an unprecedented dimerization process that involved both the phenyl and the imino group. After protecting the imino group by acetylation, the ring opening by nucleophiles was possible, resulting in the formation of derivatives of 2-pyrimidinylacetamide. 2-Acetylimino-5,7-dimethyl-3-phenylisoxazolo[2,3-a]pyrimidine also underwent a ring transformation, yielding an interesting indolone derivative. Selectivity in ring opening and mechanisms of dimerization and ring transformation are discussed.  相似文献   

13.
This work was undertaken with the aim to obtain direct evidence for the interrelationships between hetarylnitrenes, their ring-expanded cyclic carbodiimide isomers, and ring-opened nitrile ylides. Tetrazolo[1,5-a]quinoxaline 11T and tetrazolo[5.1-c]quinazoline 13T undergo valence tautomerization to the corresponding azides 11A and 13A on mild flash vacuum thermolysis (FVT). Photolysis in Ar matrixes at ca. 15 K affords the triplet nitrenes 12 and 14, identified by ESR, UV, and IR spectroscopy. The nitrenes are converted photochemically to the seven-membered ring carbodiimide 15 followed by the open-chain carbodiimide 22. The 3-methoxy- and 3-chloro-2-quinoxalinylnitrenes 24 yield the ring-expanded carbodiimides 26 very cleanly on matrix photolysis, whereas FVT affords N-cyanobenzimidazoles 28. The ring-opened nitrile ylides 36 and 49 are identified as intermediates in the photolyses of 2-phenyl-4-quinazolinylnitrene 32 and 7-nitro-2-phenyl-4- quinazolinylnitrene 47. In these systems, a photochemically reversible interconversion of the seven-membered ring carbodiimides 35 and 48 and the nitrile ylides 36 and 49 is established. Recyclization of open-chain nitrile ylides is identified as an important mechanism of formation of ring contraction products (N-cyanobenzimidazoles).  相似文献   

14.
The thermal conversion of 4‐isoxazolines to 4‐oxazolines involves the transposition of two ring members. The ring‐contraction and ring‐expansion sequence in the reaction 2 → 5 has been previously clarified. The low N−N bond energy should favor an analogous conversion of 3‐pyrazolines 6 to 4‐imidazolines 7 ; the first example of such a transformation is reported here. In the yellow 16 , the 3‐pyrazoline is part of a pyrazolo[5,1‐a]isoquinoline system. Daylight induces a ring contraction, which affords the 2‐isoquinolylaziridine derivative 21 . The latter is converted at 65° to the tricyclic 4‐imidazoline 26 by a sequence of electrocyclic aziridine ring‐opening and 1,5‐electrocyclization of a C=N‐conjugated azomethine ylide 25 .  相似文献   

15.
N-(2-azidomethyl)phenyl ketenimines and N-(2-azidomethyl)phenyl-N'-alkyl(aryl) carbodiimides undergo, under mild thermal conditions, intramolecular [3 + 2] cycloaddition reactions between the azido group and either the C=C or the distal C=N double bonds of the ketenimine and carbodiimide functions respectively. The reaction products are indolo[1,2-a]quinazolines and/or indolo[2,1-b]quinazolines in the case of azido-ketenimines, and tetrazolo[5,1-b]quinazolines in the case of azido-carbodiimides. The formation of the two classes of indoloquinazolines implies the ulterior dinitrogen extrusion from the non-isolated, putative [3 + 2] cycloadducts between the azide and ketenimine functions, whereas in the case of azido-carbodiimides the initial cycloadducts, tetrazoloquinazolines, were cleanly isolated and further converted into 2-aminoquinazolines by thermally induced dinitrogen extrusion.  相似文献   

16.
2-Azidopyrido[1,2-a]pyrimidin-4-one can exit only in the azido form and undergoes cyclo-addition reaction with 1,3-dicarbonyl compounds to form 1,2,3-triazole derivatives. Under the influence of bases or hydrochloric acid the carbonyl group is attacked with subsequent opening of the pyrimidine ring. This causes an immediate cyclization of the azide group to give a tetrazolo derivative. In a similar way a triazole ring can be formed from the appropriate hydrazino derivatives of pyrido[1,2-a]pyrimidin-4-one.  相似文献   

17.
Two ortho-hetarynium ions, the 2-pyridyl and 2-pyrimidyl cations, react promptly with 1,3-dienes in the gas phase by annulation, formally by fusion, onto the ions of a pyrrole ring. This novel reaction proceeds through an initial polar [4 + 2+] cycloaddition across the C[triple bond]N+ bond, followed by fast ring opening, a [1,4-H] shift, and finally a recyclization that results in a contraction of a six- to a five-membered ring and dissociation by the loss of a methyl radical. For the 2-pyridyl cation, this reaction yields ionized indolizines (pyrrolo[1,2-a]pyridines), while for the 2-pyrimidyl cation, it gives ionized pyrrolo[1,2-a]pyrimidines. The annulation reaction, performed in the rf-only collision quadrupole of a pentaquadrupole (QqQqQ) mass spectrometer, occurs readily with both 1,3-butadiene and isoprene, and is thermodynamically and kinetically favored as predicted by ab initio calculations. Ortho-hetarynium ions and 1,3-dienes provide, therefore, the two building blocks for the efficient one-step gas-phase synthesis of ionized bicyclic pyrrolo[1,2-a]pyridine (indolizine) and pyrrolo[1,2-a]pyrimidine, as well as their analogues and derivatives.  相似文献   

18.
Upon electron impact the open form diesters ROOC(CH2)nCOOR where R = 7-coumarinyl and 4-methyl-7-coumarinyl and their cyclic isomers obtained by photolysis react via common fragmentation pathways. The cyclic isomers derived from 7-coumarinyl by photolysis resist heating to 250oC, but a thermal ring opening was observed for the more crowded cyclic isomers derived from 4-methyl-7-coumarinyl. Differences in the appearance potentials for the ions [M ? OR]+ produced from 7-coumarinyl and its photocyclization isomers can be attributed to their different ground state enthalpies. The strain in the endo-cyclobutane ring of the photocyclization isomers derived from 7-coumarinyl (ring strain and strain due to nonbonded interactions) amounts to 38 ± 1 kcal mol?1.  相似文献   

19.
The cycloaddition of methyl acrylate and ethyl acrylate to 4,5-dihydro-5-methyl-3H-spiro[benz-2-azepine-3,1'-cyclohexane] N-oxide proceeds without either regiospecificity or stereospecificity. Eight geometrical isomers of spiro[isoxazolidino[3,2-a]benz-2-azepine-5,1'-cyclohexane] were formed, of which several were isolated as pure samples. The cycloaddition of dimethyl acetylenedicarboxylate proceeds stereoselectively, leading to spiro[isoxazolino[3,2-a]benz-2-azepine-5,1'-cyclohexane] with cis arrangement of the protons at C(7) and C(11b).  相似文献   

20.
A facile synthesis of a novel class of steroidal A/B/D-ring annulated tetrazolo[1,5-a]pyridine derivatives has been accomplished via intramolecular 1,3-dipolar cycloaddition reaction of azide with nitrile in aprotic solvent. The synthesis of D-ring annulated tetrazolo[1,5-a]pyridine in alcohol showed incorporation of an alcohol molecule into the heterocyclic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号