首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Based on the different oxidation potentials of endohedral fullerenes Sc3N@C80 Ih and D5h and Sc3N@C78, an efficient and useful method that avoids HPLC has been developed for their separation. Selective chemical oxidation of the Sc3N@D5h‐C80 isomer and Sc3N@C78 by using an acetylferrocenium salt [Fe(COCH3C5H4)Cp]+ followed by column chromatographic separation and reduction with CH3SNa resulted in the isolation of pure Sc3N@Ih‐C80, Sc3N@C78, and a mixture of Sc3N@D5h‐C80 and Sc3N@C68.  相似文献   

3.
The production, isolation, and spectroscopic characterization of a new Dy3N@C80 cluster fullerene that exhibits three isomers ( 1 – 3 ) is reported for the first time. In addition, the third isomer ( 3 ) forms a completely new C80 cage structure that has not been reported in any endohedral fullerenes so far. The isomeric structures of the Dy3N@C80 cluster fullerene were analyzed by studying HPLC retention behavior, laser desorption time‐of‐flight (LD‐TOF) mass spectrometry, and UV‐Vis‐NIR and FTIR spectroscopy. The three isomers of Dy3N@C80 were all large band‐gap (1.51, 1.33, and 1.31 eV for 1 – 3 , respectively) materials, and could be classified as very stable fullerenes. According to results of FTIR spectroscopy, the Dy3N@C80 (I) ( 1 ) was assigned to the fullerene cage C80:7 (Ih), whereas Dy3N@C80 (II) ( 2 ) had the cage structure of C80:6 (D5h). The most probable cage structure of Dy3N@C80 (III) ( 3 ) was proposed to be C80:1 (D5d). The significant differences between Dy3N@C80 and other reported M3N@C80 (M=Sc, Y, Gd, Tb, Ho, Er, Tm) cluster fullerenes are discussed in detail, and the strong influence of the metal on the nitride cluster fullerene formation is concluded.  相似文献   

4.
5.
6.
《中国化学》2017,35(9):1459-1462
Oxygenated hollow cage fullerenes have been intensively studied due to their applications in biomedicine in recent years. Clusterfullerenes have become a focus of endohedral fullerene researches for their exceptionally high yield and thermal stabilities. However, oxide derivatives of clusterfullerene remain unexplored to date. Herein, we present the photochemical synthesis of an oxide derivative of clusterfullerene, Lu3N @C80O , for the first time. The compound was characterized by matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry, UV –vis‐NIR , cyclic voltammetry, and FTIR spectroscopy. The results suggest that one oxygen atom bridges with the fullerene cage after the oxidation of Lu3N @C80 . Moreover, the oxidation has a major impact on the electrochemical behavior of Lu3N @C80 .  相似文献   

7.
8.
The electrochemistry of three new clusterfullerenes Dy3N@C2n (2n=78, 80), namely two isomers of Dy3N@C80 (I and II) as well as Dy3N@C78 (II), have been studied systematically including their redox-reaction mechanism. The cyclic voltammogram of Dy3N@C80 (I) (Ih) exhibits two electrochemically irreversible but chemically reversible reduction steps and one reversible oxidation step. Such a redox pattern is quite different from that of Sc3N@C80 (I), and this can be understood by considering the difference in the charge transfer from the encaged cluster to the cage. A double-square reaction scheme is proposed to explain the observed redox-reaction behavior, which involves the charge-induced reversible rearrangement of the Dy3N@C80 (I) monoanion. The first oxidation potential of Dy3N@C80 (II) (D5h) has a negative shift of 290 mV relative to that of Dy3N@C80 (I) (Ih), indicating that lowering the molecular symmetry of the clusterfullerene cage results in a prominent increase in the electron-donating property. The first and second reduction potentials of Dy3N@C78 (II) are negatively shifted relative to those of Dy3N@C80 (I, II), pointing to the former's lowered electron-accepting ability. The significant difference in the electrochemical energy gaps of Dy3N@C80 (I), Dy3N@C80 (II), and Dy3N@C78 (II) is consistent with the difference in their optical energy gaps.  相似文献   

9.
Advances in experimental techniques, especially the development of the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme) method, allow many gas-phase molecular processes to be studied at very low temperatures. This Review focuses on the reactions of molecular and atomic radicals with neutral molecules. Rate constants for almost 50 such reactions have been measured at temperatures as low as 13 K by using the CRESU method. The surprising demonstration that so many reactions between electrically neutral species can be extremely rapid at these very low temperatures has excited interest both from theoreticians and from those seeking to understand the chemistry that gives rise to the 135 or so molecules that are present in low-temperature molecular clouds in the interstellar medium. Theoretical treatments of these reactions are based on the idea that a reaction occurs when the long-range potential between the reagent species brings them into close contact. The astrochemical context, theoretical studies, and the determination of the rate constants of these low-temperature reactions are critically discussed.  相似文献   

10.
While the trimetallic nitrides of Sc, Y and the lanthanides between Gd and Lu preferentially template C(80) cages, M(3)N@C(80), and while those of Ce, Pr and Nd preferentially template the C(88) cage, M(3)N@C(88), we show herein that the largest metallic nitride cluster, La(3)N, preferentially leads to the formation of La(3)N@C(96) and to a lesser extent the La(3)N@C(88). This is the first time that La(3)N is successfully encapsulated inside fullerene cages. La(3)N@C(2n) metallofullerenes were synthesized by arcing packed graphite rods in a modified Kr?tschmer-Huffman arc reactor, extracted from the collected soot and identified by mass spectroscopy. They were isolated and purified by high performance liquid chromatography (HPLC). Different arcing conditions were studied to maximize fullerene production, and results showed that yields have a high La(2)O(3)/C dependence. Relatively high yields were obtained when a 1:5 ratio was used. Three main fractions, La(3)N@C(88), La(3)N@C(92), and La(3)N@C(96), were characterized by UV/Vis-NIR and cyclic voltammetry. Unlike other trimetallic nitride metallofullerenes of the same carbon cage size, La(3)N@C(88) exhibits a higher HOMO-LUMO gap and irreversible reduction and oxidation steps.  相似文献   

11.
The physical factors behind the reduced Diels–Alder reactivity of the Sc3N@C78 metallofullerene as compared with free C78 have been investigated in detail by means of computational tools. To this end, the reactions between 1,3‐butadiene and free C78 and endohedral Sc3N@C78 have been analysed in terms of regioselectivity and reactivity by using the activation strain model of reactivity in combination with the energy decomposition analysis method. Additional factors such as the molecular orbital overlap or the aromaticity of the corresponding transition states have been also explored. Our results indicate that the lower reactivity of the metallofullerene finds its origin mainly in the less stabilizing interaction between the deformed reactants along the reaction coordinate induced by the triscandium nitride moiety.  相似文献   

12.
Geometrical structures of the investigated endohedral metallofullerenes Sc3N@C2n (2n = 68, 70, 78, and 80) were optimized at the B3LYP/6‐31G* level. The analyses of electronic structures display that the contribution of fullerene cage to the lowest unoccupied molecular orbital decreases as the cage size increases. Based on the optimized structures, the time‐dependent density functional theory combined with the sum‐over‐states method was used to investigate their nonlinear optical properties. Calculated third‐order polarizabilities γ and two‐photon absorption (TPA) cross‐section δ do not present the monotone variation with the size of fullerene cage, with largest γ of 0.48 × 10?34 esu for Sc3N@C78 in static state, and largest δ of 12.374 GM for Sc3N@C70 in the wavelength of 902.5 nm. However, the obtained TPA resonant peaks shift red with the size of fullerene cage. By analyzing the electronic origin of the third‐order optical properties, it is found that the charge transfers from the fullerene cage to the encapsulated Sc3N cluster make important contributions to the studied properties. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

13.
14.
Embedding endohdedral metallofullerenes (EMFs) into electron donor–acceptor systems is still a challenging task owing to their limited quantities and their still largely unexplored chemical properties. In this study, we have performed a 1,3‐dipolar cycloaddition reaction of a corrole‐based precursor with Sc3N@C80 to regioselectively form a [5,6]‐adduct ( 1 ). The successful attachment of the corrole moiety was confirmed by mass spectrometry. In the electronic ground state, absorption spectra suggest sizeable electronic communications between the electron acceptor and the electron donor. Moreover, the addition pattern occurring at a [5,6]‐bond junction is firmly proven by NMR spectroscopy and electrochemical investigations performed with 1 . In the electronically excited state, which is probed in photophysical assays with 1 , a fast electron‐transfer yields the radical ion pair state consisting of the one‐electron‐reduced Sc3N@C80 and of the one‐electron‐oxidized corrole upon its exclusive photoexcitation. As such, our results shed new light on the practical work utilizing EMFs as building blocks in photovoltaics.  相似文献   

15.
The yield of Sc3N@C80 metallofullerene and fullerene extract is dramatically increased via filling cored graphite rods with copper and Sc2O3 only; when compared to 100% Sc2O3 packed rods, improvements of factors of approximately 3 and approximately 5 have been achieved for Sc3N@C80 and fullerene extract produced, respectively, with the weight percent of Cu added to the rod affecting the type and amount of fullerene produced.  相似文献   

16.
Mercury chalcogenides HgE (E=O, S, Se, etc.) are described in the literature to possess rather stable bonds with bond dissociation energies between 53 and 30 kcal mol(-1), which is actually difficult to understand in view of the closed-shell electron configuration of the Hg atom in its ground state (...4f(14)5d(10)6s(2)). Based on relativistically corrected many body perturbation theory and coupled-cluster theory [IORAmm/MP4, Feenberg-scaled IORAmm/MP4, IORAmm/CCSD(T)] in connection with IORAmm/B3LYP theory and a [17s14p9d5f]/aug-cc-pVTZ basis set, it is shown that the covalent HgE bond is rather weak (2-7 kcal mol(-1)), the ground state of HgE is a triplet rather than a singlet state, and that the experimental bond dissociation energies have been obtained for dimers (or mixtures of monomers, dimers, and even trimers) Hg2E2 rather than true monomers. The dimers possess association energies of more than 100 kcal mol(-1) due to electrostatic forces between the monomer units. The covalent bond between Hg and E is in so far peculiar as it requires a charge transfer from Hg to E (depending on the electronegativity of E) for the creation of a single bond, which is supported by electrostatic forces. However, a bonding between Hg and E is reduced by strong lone pair-lone pair repulsion to a couple of kcal mol(-1). Since a triplet configuration possesses somewhat lower destabilizing lone pair energies, the triplet state is more stable. In the dimer, there is a Hg-Hg pi bond of bond order 0.66 without any a support. Weak covalent Hg-O interactions are supported by electrostatic bonding. The results for the mercury chalcogenides suggests that all experimental dissociation energies for group-12 chalcogenides have to be revised because of erroneous measurements.  相似文献   

17.
The reaction of Sc3N@C80 with 6,7-dimethoxyisochroman-3-one (13C labeled) provides the first functionalized derivative of the trimetallic nitride template (TNT) endohedral metallofullerene family. The reaction mixture is dominated by a single 13C labeled monoadduct product that was purified by HPLC. The 13C labeled monoadduct was characterized by 1H NMR, 13C NMR, and MALDI-TOF mass spectrometry. The proposed structure for this novel symmetric monoadduct is consistent with derivatization at the [5,6] ring juncture on the Sc3N@C80 cage.  相似文献   

18.
The vibrational structure of the endohedral cluster fullerene Sc(3)N@C(78) is studied by FTIR spectroscopy, Raman spectroscopy and DFT-based quantum chemical calculations. Remarkably good agreement between experimental and calculated spectra is achieved and a full assignment of the Sc(3)N-based vibrational modes is given. Significant differences in the vibrational structure of the endohedral cluster fullerene Sc(3)N@C(78) and the empty, charged C(78) (6-): 5 (D(3h)') are rationalized by the strong coupling between the Sc(3)N cluster and the fullerene cage. This coupling has its origin in a significant overlap of the Sc(3)N and C(78) molecular orbitals, and causes atomic-charge and bond-length redistributions compared to the neutral C(78) and the C(78) (6-) anion. An ionic model is not sufficient to describe the electronic, geometric and vibrational structure of the Sc(3)N@C(78) nitride cluster fullerene.  相似文献   

19.
The first gadolinium-based mixed-metal nitride clusterfullerenes Gd(x)Sc(3-x)N@C(80) (I) (1, x=2; 2, x=1) have been successfully synthesized by the reactive gas atmosphere method and isolated facilely by recycling high-performance liquid chromatography (HPLC). The sum yield of 1 and 2 is 30-40 times higher than that of Gd(3)N@C(80) (I). Moreover, an enhanced relative yield of 2 over the Sc(3)N@C(80) (I) is achieved under the optimized synthesis conditions. According to the UV/Vis/NIR spectroscopic characterization, 1 and 2 are both stable fullerenes with large optical band-gaps while 1 has higher similarity to Gd(3)N@C(80) (I) and 2 resembles Sc(3)N@C(80) (I). The vibrational structures of 1 and 2 are studied by Fourier-transform infrared (FTIR) spectroscopy as well as density functional theory (DFT) computations. In particular, the structures of the encaged Gd(x)Sc(3-x)N clusters within 1 and 2 are analyzed.  相似文献   

20.
Li-Hua Gan  Ruo Yuan 《Chemphyschem》2006,7(6):1306-1310
To provide insight into the influence of encaged clusters on the structures and stability of trimetallic nitride fullerenes (TNFs), extensive density functional theory calculations were performed on Sc3N@C80, Y3N@C80, and La3N@C80 as well as their encaged clusters. The calculated results demonstrated that both Sc3N and Y3N units are planar, whereas La3N units are pyramidal inside C80-I(h), and that both of the Y3N@C80 and La3N@C80 cages deform considerably in the planes of Y3 and La3. The calculated results suggest that M-cage attraction/repulsion and M-M repulsion interactions determine the geometries of these three complex molecules and the dynamics of the corresponding encaged clusters. These calculated findings distinctly reveal the influence of the size of the encaged clusters on the structures and stability of TNFs and may rationalize their significant differences in yields and chemical reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号