首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synthesis and binding properties of a new guanidiniocarbonyl pyrrole dication 2 are reported, which efficiently binds alanine carboxylate with log Kass = 3.9 in buffered water. Due to the increased charge density in this dication, the binding constant is five times larger than for the parent guanidiniocarbonyl pyrrole monocation 1 (log K = 3.2). However, the experimental conditions for determining the binding constant significantly influence both complex stability and stoichiometry. With increasing amount of substrate added during the titration, the overall complex stability decreases due to the increasing ionic strength of the solution. Furthermore, the formation of 1:2 complexes between 2 and 7 becomes increasingly important. Therefore, for the comparison of binding data it has to be assured that exactly the same experimental conditions are used for their determination.  相似文献   

2.
An artificial dipeptide receptor (1) was designed and observed to bind the deprotonated dipeptide Ac-D-Ala-D-Ala-OH in buffered water with K = 33,100 M(-1), whereas other dipeptides such as Ac-Gly-Gly-OH or Ac-D-Val-D-Val-OH were bound less efficiently, by factors of more than 10 (K < 3000 M(-1)). The efficient binding and the pronounced sequence selectivity are the result of a combination of strong electrostatic contacts and size-discriminating hydrophobic interactions. To provide such a combination, a guanidiniocarbonylpyrrole cation was attached to a novel cyclotribenzylene-substituted alanine derivative 5, to provide a hydrophobic bowl-shaped cavity just large enough to bind a methyl group but not any larger alkyl chains, thus causing the receptor to prefer alanine to valine. We describe the synthesis of 1 and the evaluation of its complexation properties in UV and fluorescence titration studies.  相似文献   

3.
We have recently developed a new class of one-armed artificial receptors 1 for the binding of the polar tetrapeptide N-Ac-D-Glu-L-Lys-D-Ala-D-Ala-OH (EKAA) 2 in water using a combined combinatorial and statistical approach. We have now further probed the substrate selectivity of this receptor library 1 by screening a second tetrapeptide substrate (3) with the inverse sequence N-Ac-D-Ala-D-Ala-L-Lys-D-Glu-OH (AAKE). This "inverse" substrate is also efficiently bound by our receptors, with K(ass) approximately 6000 M(-1) for the best receptors, as determined both by a quantitative on-bead binding assay and by UV and fluorescence titration studies in free solution. Hence, the inverse tetrapeptide 3 is in general bound two to three times less efficiently than the "normal" peptide 2 (K(ass) approximately 17,000 M(-1)), even though the complexation mainly involves long-range electrostatic interactions and both the receptor and substrate are rather flexible. Molecular modeling and ab initio calculations have been used to rationalize the observed substrate selectivity and to analyze the various binding interactions within the complex.  相似文献   

4.
5.
Covalent fusion of two artificial recognition motifs for arginine and aspartate resulted in a new class of ditopic RGD receptor molecules, 1-4. The two binding sites for the oppositely charged amino acid residues are linked by either flexible linkers of different length (in 1-3) or a rigid aromatic spacer (in 4). These spacers are shown to be critical for the complexation efficiency of the artificial hosts. If the linkers are too flexible, as in 1-3, an undesired intramolecular self-association occurs within the host and competes with, and thereby weakens, substrate binding. The rigid aromatic linker in 4 prevents any intramolecular self-association and hence efficient RGD binding is observed, even in buffered water (association constant of K(a) approximately 3000 m(-1)). A further increase in hydrophobic contacts, as in host 16, can complement the specific Coulomb attractions, thereby leading to an even more stable complex (Ka=5000 m(-1)). The recognition events have been studied with NMR spectroscopy, UV/Vis spectroscopy, and fluorescence titrations.  相似文献   

6.
7.
Work on the use of cyclic peptides or pseudopeptides as synthetic receptors started even before the field of supramolecular chemistry was firmly established. Research initially focused on the development of synthetic ionophores and involved the use of macrocycles with a repeating sequence of subunits along the ring to facilitate the correlation between structure, conformation, and binding properties. Later, nonnatural amino acids as building blocks were also considered. With growing research in this area, cyclopeptides and related macrocycles developed into an important and structurally diverse receptor family. This review provides an overview of these developments, starting from the early years. The presented systems are classified according to characteristic structural elements present along the ring. Wherever possible, structural aspects are correlated with binding properties to illustrate how natural or nonnatural amino acids affect binding properties.  相似文献   

8.
Structures and properties of nonbonding interactions involving guanidinium-functionalized hosts and carboxylate substrates were investigated by a combination of ab initio and molecular dynamics approaches. The systems under study are on one hand intended to be a model of the arginine-anion bond, so often observed in proteins and nucleic acids, and on the other to provide an opportunity to investigate the influence of molecular structure on the formation of supramolecular complexes in detail. Use of DFT calculations, including extended basis sets and implicit water treatment, allowed us to determine minimum-energy structures and binding enthalpies that compared well with experimental data. Intermolecular forces were found to be mostly due to electrostatic interactions through three hydrogen bonds, one of which is bifurcate, and are sufficiently strong to induce a conformational change in the ligand consisting of a rotation of about 180 degrees around the guanidiniocarbonylpyrrole axis. Free binding energies of the complexes were evaluated through MD simulations performed in the presence of explicit water molecules by use of the molecular mechanics Poisson-Boltzmann solvent accessible surface area (MM-PBSA) and linear interaction energy (LIE) approaches. LIE energies were in quantitative agreement with experimental data. A detailed analysis of the MD simulations revealed that the complexes cannot be described in terms of a single binding structure, but that they are characterized by a significant internal mobility responsible for several low-energy metastable structures.  相似文献   

9.
Two α-aminoisobutyric acid (Aib) foldamers bearing Zn(II)-chelating N-termini have been synthesized and compared with a reported Aib foldamer that has a bis(quinolinyl)/mono(pyridyl) cap (BQPA group). Replacement of the quinolinyl arms of the BQPA-capped foldamer with pyridyl gave a BPPA-capped foldamer, then further replacement of the linking pyridyl with a 1,2,3-triazole gave a BPTA-capped foldamer. Their ability to relay chiral information from carboxylate bound to Zn(II) at the N-terminus to a glycinamide-based NMR reporter of conformational preference at the C-terminus was measured. The importance of the quinolinyl arms became readily apparent, as the foldamers with pyridyl arms were unable to report on the presence of chiral carboxylate in acetonitrile. Low solubility, X-ray crystallography and 1H NMR spectroscopy suggested that interfoldamer interactions inhibited carboxylate binding. However changing solvent to methanol revealed that the end-to-end relay of chiral information could be observed for the Zn(II) complex of the BPTA-capped foldamer at low temperature.  相似文献   

10.
Compounds 1-3, composed of two guanidiniocarbonylpyrrole moieties linked by oligoamide bridges and differing in number and type of basic groups, were prepared. The sites and degree of protonation of 1-3 depend strongly on the pH value. The interactions of these compounds with several double-stranded (ds) DNA and dsRNA were investigated by means of UV/Vis and CD spectroscopy as well as isothermal titration microcalorimetry (ITC). These studies revealed that the binding of 1-3 to the polynucleotides is driven by three factors, the presence of aliphatic amino groups, the protonation state of the compounds, and the steric properties of the polynucleotide binding site, that is, the shape and structure of their grooves. The results obtained by all applied methods consistently indicated that receptors 1-3 bind to the minor groove of DNA, but, by contrast, to the major groove of RNA. Additionally, it was shown by atomic force microscopy (AFM) imaging that upon interaction of compound 2 with calf thymus (ct) DNA induced aggregation of the DNA occurs, leading to pronounced changes in its secondary structure.  相似文献   

11.
12.
A series of guanidiniocarbonyl pyrrole receptors has been synthesized which bind carboxylates by ion pairing in combination with multiple hydrogen bonds. Their binding properties with various carboxylates have been investigated using NMR titration studies in 40% water/DMSO (v/v). The best receptor has association constants which are in the order of K approximately/= 10(3) mol(-1) and hence some 30 times larger than with the simple acetyl guanidinium cation. Through a systematic variation of the receptor structure, semiquantitative estimates for the energetic contributions of the individual binding interactions could be derived. These data show that the various hydrogen bonds are not equally important for the binding but differ significantly in their energetic contribution to the overall complexation process. Furthermore, the receptor can be made chiral and shows selectivity upon binding of enantiomeric amino acid carboxylates. Molecular modeling was used to obtain structural information for the various receptor carboxylate complexes and served as a basis to explain the observed differences in binding constants.  相似文献   

13.
Stereodynamic optical probes are becoming very popular for their capability to act as molecular sensors for the determination of the enantiomeric excess (ee) of chiral compounds. Herein, we describe a new molecular architecture formed by the self‐assembly of three zinc metal ions, two modified tris(2‐pyridylmethyl)amine ligands, and two amino acids. This system is the structural and functional serendipitous evolution of our previous probe for the determination of amino acids ee. In the new system, one of the metals templates in close proximity two chromophores enhancing their exciton coupling.  相似文献   

14.
Carbohydrates are slippery customers in water. Camouflaged by solvent‐mimicking hydroxy groups, they make challenging targets, even for natural receptors. In their Communication on page 1775 ff., A. P. Davis and co‐workers describe a synthetic receptor that is remarkably effective for the important β‐N‐acetylglucosaminyl (β‐GlcNAC) unit. The affinities of the receptor are good and its selectivities are excellent, even by the standards of natural carbohydrate‐binding proteins.

  相似文献   


15.
Host-guest interactions between the periphery of adamantylurea-functionalized dendrimers (host) and ureido acetic acid derivatives (guest) were shown to be specific, strong and spatially well-defined. The binding becomes stronger when using phosphonic or sulfonic acid derivatives. In the present work we have quantified the binding constants for the host-guest interactions between two different host motifs and six different guest molecules. The host molecules, which resemble the periphery of a poly(propylene imine) dendrimer, have been fitted with an anthracene-based fluorescent probe. The two host motifs differ in terms of the length of the spacer between a tertiary amine and two ureido functionalities. The guest molecules all contain an acidic moiety (either a carboxylic acid, a phosphonic acid, or a sulfonic acid) and three of them also contain an ureido moiety capable of forming multiple hydrogen bonds to the hosts. The binding constants for all 12 host-guest complexes have been determined by using fluorescence titrations by monitoring the increase in fluorescence of the host upon protonation by the addition of the guest. The binding constants could be tuned by changing the design of the acidic part of the guest. The formation of hydrogen bonds gives, in all cases, higher association constants, demonstrating that the host is more than a proton sensor. The host with the longer spacer (propyl) shows higher association constants than the host with the shorter spacer (ethyl). The gain in association constants are higher when the urea function is added to the guests for the host with the longer spacer, indicating a better fit. Collision-induced dissociation mass spectrometry (CID-MS) is used to study the stability of the six motifs using the corresponding third generation dendrimer. A similar trend is found when the six different guests are compared.  相似文献   

16.
17.
The synthesis of a novel [2]rotaxane host system containing a bis(triazolium)acridine‐based axle component is reported. 1H NMR anion‐binding titrations reveal that the rotaxane is able to recognise selectively the NO3? anion over a range of more basic oxoanions (AcO?, HCO3? and H2PO4?) in a competitive organic–aqueous solvent mixture.  相似文献   

18.
Molecular adducts of 2,4-diamino-6-methyl-1,3,5-triazine (1) have been prepared with various aliphatic dicarboxylic acids. The molecular complexes (1 a-1 i) thus formed by co-crystallizing 1 with oxalic, malonic, succinic, fumaric, acetylene dicarboxylic, glutaric, thiodiglycolic, diglycolic, and adipic acids have been found to give two types of host-guest assemblies that have voids or channels in a three-dimensional arrangement. The different types of host-guest arrangement appear to result from differences in the acidity of the dicarboxylic acids, that is, acids with pK(a)<3.0 give host networks that consist of 1 and the corresponding acid with water or solvent molecules of crystallization present as guests, whereas acids with pK(a)>3.0 exist as guests in voids in a host network formed by 1. The former arrangement is observed in adducts 1 a, 1 b, 1 e, and 1 h and the latter arrangement is found in adducts 1 c, 1 d, 1 f, 1 g, and 1 i.  相似文献   

19.
20.
The utilities of benzobis(imidazolium) salts (BBIs) as stable and fluorescent components of supramolecular assemblies involving the macrocyclic host, cucurbit[8]uril (CB[8]), are described. CB[8] has the unusual ability to bind tightly and selectively to two different guests in aqueous media, typically methyl viologen (MV) as the first guest, followed by an indole, naphthalene, or catechol-containing second guest. Based on similar size, shape, and charge, tetramethyl benzobis(imidazolium) (MBBI) was identified as a potential alternative to MV that would increase the repertoire of guests for cucurbit[8]uril. Isothermal titration calorimetry (ITC) studies showed that MBBI binds to CB[8] in a 1:1 ratio with an equilibrium association constant (K(a)) value of 5.7×10(5) M(-1), and that the resulting MBBI·CB[8] complex binds to a series of aromatic second guests with K(a) values ranging from 10(3) to 10(5) M(-1). These complexation phenomena were supported by mass spectrometry, which confirmed complex formation, and a series of NMR studies that showed the expected upfield perturbation of aromatic peaks and of the MBBI methyl peaks. Surprisingly, the binding behavior of MBBI is strikingly similar to that of MV, and yet MBBI offers a number of substantial advantages for many applications, including intrinsic fluorescence, high chemical stability, and broad synthetic tunability. Indeed, the intense fluorescence emission of the MBBI·CB[8] complex was quenched upon binding to the second guests, thus demonstrating the utility of MBBI as a component for optical sensing. Building on these favorable properties, the MBBI·CB[8] system was successfully applied to the sequence-selective recognition of peptides as well as the controlled disassembly of polymer aggregates in water. These results broaden the available guests for the cucurbit[n]uril family and demonstrate potentially new applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号