首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An examination of partial rate data for the decomposition of diazo acetic ester and dimethyl diazomalonate, in the presence of soluble copper salts and cyclohexene, revealed the existence of two paths to carbene dimer formation, one with a unimolecular dependence upon catalyst, the other with a bimolecular dependence. Assuming carbenoid formation, this is taken as indicative of dimer formation occurring by carbenoid + diazo compound and carbenoid + carbenoid paths. Conformational analyses indicate a preference for diethyl maleate formation by the carbenoid-diazo ester path for the case of diazoacetic ester and a preference for diethyl furmate formation by the carbenoid + carbenoid path.  相似文献   

2.
A computational study of the cyclopropanation reactions of divalent samarium carbenoid ISmCH(2)I with ethylene is presented. The reaction proceeds through two competing pathways: methylene transfer and carbometalation. The ISmCH(2)I species was found to have a "samarium carbene complex" character with properties similar to previously investigated lithium carbenoids (LiCH(2)X where X = Cl, Br, I). The ISmCH(2)I carbenoid was found to be noticeably different in structure with more electrophilic character and higher chemical reactivity than the closely related classical Simmons-Smith (IZnCH(2)I) carbenoid. The effect of THF solvent was investigated by explicit coordination of the solvent THF molecules to the Sm (II) center in the carbenoid. The ISmCH(2)I/(THF)(n)() (where n = 0, 1, 2) carbenoid methylene transfer pathway barriers to reaction become systematically lower as more THF solvent is added (from 12.9 to 14.5 kcal/mol for no THF molecules to 8.8 to 10.7 kcal/mol for two THF molecules). In contrast, the reaction barriers for cyclopropanation via the carbometalation pathway remain high (>15 kcal/mol). The computational results are briefly compared to other carbenoid reactions and related species.  相似文献   

3.
The highly stereoselective intramolecular metal carbenoid insertion reaction of sulfinimine-derived delta-amino alpha-diazoesters is used to prepare cis-5-tert-butylproline. A concerted or nearly concerted metal carbenoid N-H insertion reaction mechanism is proposed.  相似文献   

4.
A computational study of the platinum-catalyzed cyclopropanation reaction with olefin is presented. The model system is formed by an ethylene molecule and the active catalytic species, which forms from a CH2 fragment and the Cl2Pt(PH3)2 complex. The results show that the active catalytic species is not a metal-carbene of the type (PH3)2Cl2Pt=CH2 but two carbenoid complexes which can exist in almost two degenerate forms, namely (PH3)2Pt(CH2Cl)Cl (carbenoid A) and (PH3)Pt(CH2PH3)Cl2 (carbenoid B). The reaction proceeds through three pathways: methylene transfer, carbometalation for carbenoid A, and the reaction of a monophosphinic species for carbenoids (A and B). The most favored reaction channel is methylene transfer pathway for (PH3)Pt(CH2PH3)Cl2 (carbenoid B) species with a barrier of 31.32 kcal/mol in gas phase. The effects of dichloromethane, THF, and benzene solvent are investigated with PCM method. For carbenoid A, both methylene transfer and carbometalation pathway barriers to reaction become remarkably lower with the increasing polarity of solvent (from 43.25 and 52.50 kcal/mol for no solvent to 25.36 and 38.53 kcal/mol in the presence of the dichloromethane). In contrast, the reaction barriers for carbenoid B via the methylene transfer path hoist 6.30 kcal/mol, whereas the barriers do not change significantly for the reaction path of a monophosphinic species for carbenoids (A and B).  相似文献   

5.
The carbon-13 NMR spectra of six carbenoid complexes of the type (OC)5Cr-(CXX′) have been recorded. The carbenoid carbon atoms are all markedly deshielded (chemical shifts vs. TMS in the range ?271 to ?360). With only one minor inversion of uncertain significance, the chemical shifts correlate well with the expected ability of the X and X′ groups to engage in dative π bonding to the carbenoid carbon atom. The longitudinal relaxation times for both carbenoid and carbonyl carbon atoms in (OC)5Cr[C(CH3)(OC2H5)] are 1 – 2 sec. The chemical shift difference for carbonyl carbon atoms cis and trans to the carbenoid ligand is essentially invariant in the six compounds.  相似文献   

6.
The intramolecular insertion of rhodium carbenoids into the alpha-C-H bonds of allylic ethers to give 3(2H)-furanones has been explored. Cyclopropanation is favored irrespective of the complex used for carbenoid generation or the substitution pattern of the allylic ether, unless a substituent is placed on the tether connecting the ether to the alpha-diazo ketone. Unusual acetal products resulting from an anomalous C-H insertion process are obtained in addition to the expected 3(2H)-furanones formed by conventional carbenoid C-H insertion. These acetals are the favored C-H insertion products in certain circumstances and particularly in cases where carbenoid generation is effected using an electron-deficient rhodium complex. Experiments with simple deuterium labeled substrates reveal that anomalous C-H insertion products arise by a mechanism that is distinct from that leading to the formation of conventional C-H insertion products. The formation of acetal products and the outcome of reactions performed using deuterium-labeled substrates suggest that a mechanism involving hydride migration to the rhodium center of the carbenoid is operative.  相似文献   

7.
The transition metal catalyzed reaction of α-diazo carbonyl compounds has found numerous applications in organic synthesis, and its use in either heterocyclic or carbocyclic ring formation is well precedented. In contrast to other catalysts that are suitable for carbenoid reactions of diazo compounds, those constructed with the dirhodium(II) framework are most amenable to ligand modification that, in turn, can influence reaction selectivity. The reaction of rhodium carbenoids with carbonyl groups represents a very efficient method for generating carbonyl ylide dipoles. Rhodium-mediated carbenoid–carbonyl cyclization reactions have been extensively utilized as a powerful method for the construction of a variety of novel polycyclic ring systems. This article will emphasize some of the more recent synthetic applications of the tandem rhodium carbenoid cyclization/cycloaddition cascade for natural product synthesis. Discussion centers on the chemical behavior of the rhodium metal carbenoid complex that is often affected by the nature of the ligand groups attached to the metal center.  相似文献   

8.
The trivalent samarium carbenoid I2SmCH2I-promoted cyclopropanation reactions with ethylene have been investigated and are predicted to be highly reactive, similarly to the divalent samarium carbenoid ISmCH2I. The methylene transfer and carbometalation pathways were explored and compared with and without coordination of THF solvent molecules to the carbenoid. The methylene transfer was found to be favored, with the barrier to reaction going from 12.9 to 9.2 kcal/mol compared to barriers of 15.4-17.5 kcal/mol for the carbometalation pathway upon the addition of one THF molecule.  相似文献   

9.
A wide variety of new macrocyclic diazocarbonyl compounds with various spacers was synthesized. Macrocyclic rhodium(II) carbenoid insertion with various substituted indoles was performed to afford regioselectively, indol-3-yl macrocyclic di- or tetralactones (C3-alkylation). Double carbenoid insertion was also performed to afford indolyl cryptand molecules.  相似文献   

10.
o-Alkynyl-substituted alpha-diazoketones undergo internal cyclization to produce indenone derivatives upon treatment with catalytic quantities of Rh(II)-carboxylates. A variety of structural influences were encountered by varying the nature of the substituent group attached to the diazo center. The cyclization reaction involves addition of a rhodium-stabilized carbenoid onto the acetylenic pi-bond to generate a cycloalkenone carbenoid. The cyclized carbenoid was found to undergo both aromatic and aliphatic C-H insertion as well as cyclopropanation across a tethered pi-bond. Subjection of diazo phenyl acetic acid 3-phenylprop-2-ynyl ester to Rh(II) catalysis furnished 8-phenyl-1, 8-dihydro-2-oxacyclopenta[a]indenone in high yield. The formation of this compound involves cyclization of the initially formed carbenoid onto the alkyne to produce a butenolide which then undergoes C-H insertion into the neighboring aromatic system. When a vinyl ether is added, the initially formed rhodium carbenoid intermediate can be intercepted by the electron-rich pi-bond prior to cyclization. Different rhodium catalysts were shown to result in significant variation in the product ratios. The competition between bimolecular cyclopropanation, 1,2-hydrogen migration, and internal cyclization was probed using several enol ethers as well as diazoesters which possess different substituent groups on the ester backbone. The specific path followed was found to depend on electronic, steric, and conformational factors.  相似文献   

11.
The deceptively simple vinylic substitution reactions Alk2C=CA-Br + RLi --> Alk2C=CA-R + LiBr (A = H, D, or Br) occur via an alkylidenecarbenoid chain mechanism (three steps) without transition metal catalysis. 2-(Bromomethylidene)-1,1,3,3-tetramethylindan (Alk2C=CH-Br, 2a) is deprotonated (step 1) by phenyllithium (PhLi) to give the Br,Li-alkylidenecarbenoid Alk2C=CLi-Br (3). In the ensuing chain cycle, 3 and PhLi (step 2) form the observable alkenyllithium intermediate Alk2C=CLi-Ph that characterizes the carbenoid mechanism in Et2O and is able to propagate the chain (step 3) through deprotonation of 2a, furnishing carbenoid 3 and the product Alk2C=CH-Ph. The related 2-(dibromomethylidene)-1,1,3,3-tetramethylindan (Alk2C=CBr2, 2c) and methyllithium (MeLi) generate carbenoid 3 (step 1), which incorporates MeLi (step 2) to give Alk2C=CLi-CH3, which reacts with 2c by bromine transfer producing Alk2C=CBr-CH3 and carbenoid 3 (step 3). PhCCLi cannot carry out step 1, but MeLi can initiate (step 1) the carbenoid chain cycle (steps 2 and 3) of 2c with PhC[triple bond]CLi leading to Alk2C=CBr-C[triple bond]C-Ph. Reagent 2a may perform both proton and bromine transfer toward Alk2C=CLi-CH3, feeding two coupled carbenoid chain processes in a ratio that depends on the solvent and on a primary kinetic H/D isotope effect.  相似文献   

12.
Reaction pathways of the Simmons-Smith reaction   总被引:1,自引:0,他引:1  
The cyclopropanation reaction of an alkene with a metal carbenoid has been studied by means of the B3LYP hybrid density functional method. The cyclopropanation of ethylene with a lithium carbenoid or a zinc carbenoid [Simmons-Smith (SS) reagent] goes through two competing pathways, methylene transfer and carbometalation. Both processes are fast for the lithium carbenoid, while, for the zinc carbenoid, only the former is fast enough to be experimentally feasible. The reaction of an SS reagent (ClZnCH(2)Cl) with ethylene and an allyl alcohol in the presence of ZnCl(2) was also studied. The allyl alcohol reaction was modeled with an SS reagent/alkoxide complex (ClCH(2)ZnOCH(2)CH=CH(2)) formed from the SS reagent and allyl alcohol. Two modes of acceleration were found. The first involves the well-accepted mechanism of 1,2-chlorine migration, and the second involves a five-centered bond alternation. The latter was found to be more facile than the former and to operate equally well both with ethylene and with aggregates of SS reagent/alkoxide complexes. Calculations on the SS reaction with 2-cyclohexen-1-ol offer a reasonable model for the hydroxy-directed diastereoselective SS reaction, which has been used for a long time in organic synthesis.  相似文献   

13.
Briones JF  Davies HM 《Organic letters》2011,13(15):3984-3987
Silver triflate was found to be an efficient catalyst for the cyclopropenation of internal alkynes using donor-/acceptor-substituted diazo compounds as carbenoid precursors. Highly substituted cyclopropenes, which cannot be synthesized directly via rhodium(II)-catalyzed carbenoid chemistry, can now be readily accessed.  相似文献   

14.
A variety of N‐(furan‐3‐ylmethylene)benzenesulfonamides were obtained by a gold(I)‐catalyzed cascade reaction from easily accessible starting materials. The reaction pathway involves a rarely observed 1,2‐alkynyl migration onto a gold carbenoid. This observation further enriches gold carbenoid chemistry with regard to group migration.  相似文献   

15.
The first example of carbenoid ring expansion of thiophene to a 2H-thiopyran has been observed in its Rh-catalysed reaction with benzhydryl 6-diazopenicillanate. Buchner ring expansion of anisole with the same carbenoid gives two isomeric methoxy-cycloheptatrienes by attack on the upper face of the β-lactam ring. In one of the isomers, the methoxyl group shows a strong conformational preference in solution, revealed by n.O.e. difference speotroscopy.  相似文献   

16.
Clark JS  Vignard D  Parkin A 《Organic letters》2011,13(15):3980-3983
A concise synthesis of the tricyclic core of the marine diterpene natural products labiatin A and australin A has been accomplished. The key ring-forming transformation is a cascade reaction comprising generation of a copper carbenoid from a diazo ketone, intramolecular reaction of the carbenoid with a cyclic ether, and rearrangement of the resulting free oxonium ylide or its metal-bound equivalent with ring expansion of the original cyclic ether.  相似文献   

17.
Dirhodium tetrakis-(R)-(1-(4-bromophenyl)-2,2-diphenylcyclopropanecarboxylate) (Rh(2)(R-BTPCP)(4)) was found to be an effective chiral catalyst for enantioselective reactions of aryl- and styryldiazoacetates. Highly enantioselective cyclopropanations, tandem cyclopropanation/Cope rearrangements and a combined C-H functionalization/Cope rearrangement were achieved using Rh(2)(R-BTPCP)(4) as catalyst. The advantages of Rh(2)(R-BTPCP)(4) include its ease of synthesis, its tolerance to the size of the ester group in the styryldiazoacetates, and its compatibility with dichloromethane as solvent. Computational studies suggest that the catalyst adopts a D(2)-symmetric arrangement, but when the carbenoid binds to the catalyst, two of the p-bromophenyl groups on the ligands rotate outward to make room for the carbenoid and the approach of the substrate to the carbenoid.  相似文献   

18.
An investigation into the mechanism and stereochemistry of chiral lithium-carbenoid-promoted cyclopropanation reactions by using density functional theory (DFT) methods is reported. Previous work suggested that this type of cyclopropanation reaction may proceed by competition between a methylene-transfer mechanism and a carbometalation mechanism. In this paper, it is demonstrated that the intramolecular cyclopropanation reactions promoted by chiral carbenoids 1 and 2 proceed by the methylene-transfer mechanism. The carbometalation mechanism was found to have a much higher reaction barrier and does not appear to compete with the methylene-transfer mechanism. The Lewis base group does not enhance the carbometalation pathway enough to compete with the methylene-transfer pathway. The present computational results are consistent with experimental observations for these cyclopropanation reactions. The factors governing the stereochemistry of the intramolecular cyclopropanation reaction by the methylene-transfer mechanism were examined to help elucidate the origin of the stereoselectivity observed in experiments. Both the directing group and the configuration at the C(1) centre were found to play a key role in the stereochemistry. Carbenoid 1 has a chiral C(1) centre of R configuration. The Lewis base group directs the cyclization of carbenoid 1 to form a single product. In contrast, the Lewis base group cannot direct the cyclization of carbenoid 2 to furnish a stereoselective product due to the S configuration of the chiral C(1) centre in carbenoid 2. This relationship of the stereochemistry to the chiral character of the carbenoid has implications for the design of new efficient carbenoid reagents for stereoselective cyclopropanation.  相似文献   

19.
The transition metal catalyzed reaction of α-diazo carbonyl compounds has found numerous applications in organic synthesis, and its use in either heterocyclic or carbocyclic ring formation is well precedented. Early work in this area made use of insoluble copper catalysts. Although these catalysts are still employed today, their use has decreased significantly with the advent of homogeneous copper catalysts and catalysts based on other metals. The discovery that RhII carboxylates facilitate nitrogen loss from diazo compounds rekindled significant interest in the field of diazo/carbenoid chemistry. Since the realization that RhII carboxylates are superior catalysts for the generation of transient electrophilic metal carbenoids from α-diazo carbonyl compounds, intramolecular carbenoid addition and insertion reactions have assumed strategic importance in C? C bond-forming reactions in organic synthesis. In contrast to other catalysts that are suitable for carbenoid reactions of diazo compounds, those constructed with the dirhodium(II ) framework are most amenable to ligand modifications that, in turn, can influence reaction selectivity. This article will emphasize the chemical behavior of transition metal carbenoid complexes that are greatly affected by the nature of the ligand groups attached to the metal center. Much of the discussion will center on the ability of the dirhodium(II ) ligands to determine reaction preference toward different functional groups on the same molecule.  相似文献   

20.
The rhodium(II) catalyzed decomposition of several α-diazo ketoamides resulted in either formation of a push-pull carbonyl ylide intermediate followed by intramolecular [3+2]-cycloaddition across the tethered π-bond or C-H insertion of the initially formed rhodium carbenoid into the C5-position of the lactam ring followed by a carboethoxy-decarboxylation reaction. The chemoselectivity exhibited by the rhodium carbenoid intermediate was found to be markedly dependent on the metal ligands employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号