首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fluid Phase Equilibria》2004,219(1):55-60
A non-equilibrium molecular dynamics simulation was adopted to calculate the diffusion coefficients for a pseudo-binary system of carbon dioxide and for a carbon dioxide + solute system at 308.2 and 318.2 K. The calculated results were compared with the self- and tracer diffusion coefficients calculated by an equilibrium molecular dynamics simulation. The simulated results for the pseudo-binary system of carbon dioxide by the non-equilibrium molecular dynamics simulation are in good agreement with the results of self diffusion coefficients for pure carbon dioxide by the equilibrium molecular dynamics simulation. The simulated results of mutual diffusion coefficients for the carbon dioxide + solute system by the non-equilibrium molecular dynamics simulation are slightly lower than the results of the tracer diffusion coefficients by the equilibrium molecular dynamics simulation. The anomalous behavior of diffusion coefficients near the critical concentration was represented by the results of the non-equilibrium molecular dynamics simulation.  相似文献   

2.
We have applied computational protocols based on DFT and molecular dynamics simulations to the prediction of the alkyl 1H and 13C chemical shifts of alpha-d-glucose in water. Computed data have been compared with accurate experimental chemical shifts obtained in our laboratory. 13C chemical shifts do not show a marked solvent effect. In contrast, the results for 1H chemical shifts provided by structures optimized in the gas phase are only fair and point out that it is necessary to take into account both the flexibility of the glucose structure and the strong effect exerted by solvent water thereupon. Thus, molecular dynamics simulations were carried out to model both the internal geometry as well as the influence of solvent molecules on the conformational distribution of the solute. Snapshots from the simulation were used as input to DFT NMR calculations with varying degrees of sophistication. The most important factor that affects the accuracy of computed 1H chemical shifts is the solute geometry; the effect of the solvent on the shielding constants can be reasonably accounted for by self-consistent reaction field models without the need of explicitly including solvent molecules in the NMR property calculation.  相似文献   

3.
The solvent effect on the absorption spectra of coumarin 120 (C120) in water was studied utilizing the combined quantum mechanical∕molecular mechanical (QM∕MM) method. In molecular dynamics (MD) simulation, a new sampling scheme was introduced to provide enough samples for both solute and solvent molecules to obtain the average physical properties of the molecules in solution. We sampled the structure of the solute and solvent molecules separately. First, we executed a QM∕MM MD simulation, where we sampled the solute molecule in solution. Next, we chose random solute structures from this simulation and performed classical MD simulation for each chosen solute structure with its geometry fixed. This new scheme allowed us to sample the solute molecule quantum mechanically and sample many solvent structures classically. Excitation energy calculations using the selected samples were carried out by the generalized multiconfigurational perturbation theory. We succeeded in constructing the absorption spectra and realizing the red shift of the absorption spectra found in polar solvents. To understand the motion of C120 in water, we carried out principal component analysis and found that the motion of the methyl group made the largest contribution and the motion of the amino group the second largest. The solvent effect on the absorption spectrum was studied by decomposing it in two components: the effect from the distortion of the solute molecule and the field effect from the solvent molecules. The solvent effect from the solvent molecules shows large contribution to the solvent shift of the peak of the absorption spectrum, while the solvent effect from the solute molecule shows no contribution. The solvent effect from the solute molecule mainly contributes to the broadening of the absorption spectrum. In the solvent effect, the variation in C-C bond length has the largest contribution on the absorption spectrum from the solute molecule. For the solvent effect on the absorption spectrum from the solvent molecules, the solvent structure around the amino group of C120 plays the key role.  相似文献   

4.
An efficient approach is presented for performing efficient molecular dynamics simulations of solute aggregation in crystalline solids. The method dynamically divides the total simulation space into "active" regions centered about each minority species, in which regular molecular dynamics is performed. The number, size, and shape of these regions is updated periodically based on the distribution of solute atoms within the overall simulation cell. The remainder of the system is essentially static except for periodic rescaling of the entire simulation cell in order to balance the pressure between the isolated molecular dynamics regions. The method is shown to be accurate and robust for the Environment-Dependant Interatomic Potential (EDIP) for silicon and an Embedded Atom Method potential (EAM) for copper. Several tests are performed beginning with the diffusion of a single vacancy all the way to large-scale simulations of vacancy clustering. In both material systems, the predicted evolutions agree closely with the results of standard molecular dynamics simulations. Computationally, the method is demonstrated to scale almost linearly with the concentration of solute atoms, but is essentially independent of the total system size. This scaling behavior allows for the full dynamical simulation of aggregation under conditions that are more experimentally realizable than would be possible with standard molecular dynamics.  相似文献   

5.
A new approach to the calculation of the free energy of solvation from trajectories obtained by molecular dynamics simulation is presented. The free energy of solvation is computed as the sum of three contributions originated at the cavitation of the solute by the solvent, the solute-solvent nonpolar (repulsion and dispersion) interactions, and the electrostatic solvation of the solute. The electrostatic term is calculated based on ideas developed for the broadly used continuum models, the cavitational contribution from the excluded volume by the Claverie-Pierotti model, and the Van der Waals term directly from the molecular dynamics simulation. The proposed model is tested for diluted aqueous solutions of simple molecules containing a variety of chemically important functions: methanol, methylamine, water, methanethiol, and dichloromethane. These solutions were treated by molecular dynamics simulations using SPC/E water and the OPLS force field for the organic molecules. Obtained free energies of solvation are in very good agreement with experimental data.  相似文献   

6.
The quantification of binding properties of ions, surfactants, biopolymers, and other macromolecules to nanometer‐scale surfaces is often difficult experimentally and a recurring challenge in molecular simulation. A simple and computationally efficient method is introduced to compute quantitatively the energy of adsorption of solute molecules on a given surface. Highly accurate summation of Coulomb energies as well as precise control of temperature and pressure is required to extract the small energy differences in complex environments characterized by a large total energy. The method involves the simulation of four systems, the surface‐solute–solvent system, the solute–solvent system, the solvent system, and the surface‐solvent system under consideration of equal molecular volumes of each component under NVT conditions using standard molecular dynamics or Monte Carlo algorithms. Particularly in chemically detailed systems including thousands of explicit solvent molecules and specific concentrations of ions and organic solutes, the method takes into account the effect of complex nonbond interactions and rotational isomeric states on the adsorption behavior on surfaces. As a numerical example, the adsorption of a dodecapeptide on the Au {111} and mica {001} surfaces is described in aqueous solution. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

7.
The molecular dynamics (MD) simulation study of solvation structure and free energetics in 1-ethyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium hexafluorophosphate using a probe solute in the preceding article [Y. Shim, M. Y. Choi and H. J. Kim, J. Chem. Phys. 122, 044510 (2005)] is extended to investigate dynamic properties of these liquids. Solvent fluctuation dynamics near equilibrium are studied via MD and associated time-dependent friction is analyzed via the generalized Langevin equation. Nonequilibrium solvent relaxation following an instantaneous change in the solute charge distribution and accompanying solvent structure reorganization are also investigated. Both equilibrium and nonequilibrium solvation dynamics are characterized by at least two vastly different time scales--a subpicosecond inertial regime followed by a slow diffusive regime. Solvent regions contributing to the subpicosecond nonequilibrium relaxation are found to vary significantly with initial solvation configurations, especially near the solute. If the solvent density near the solute is sufficiently high at the outset of the relaxation, subpicosecond dynamics are mainly governed by the motions of a few ions close to the solute. By contrast, in the case of a low local density, solvent ions located not only close to but also relatively far from the solute participate in the subpicosecond relaxation. Despite this difference, linear response holds reasonably well in both ionic liquids.  相似文献   

8.
A classical density functional theory approach to solvation in molecular solvent is presented. The solvation properties of an arbitrary solute in a given solvent, both described by a molecular force field, can be obtained by minimization of a position and orientation-dependent free-energy density functional. In the homogeneous reference fluid approximation, limited to two-body correlations, the unknown excess term of the functional approximated by the angular-dependent direct correlation function of the pure solvent. We show that this function can be extracted from a preliminary MD simulation of the pure solvent by computing the angular-dependent pair distribution function and solving subsequently the molecular Ornstein-Zernike equation using a discrete angular representation. The corresponding functional can then be minimized in the presence of an arbitrary solute on a three-dimensional cubic grid for positions and Gauss-Legendre angular grid for orientations to provide the solvation structure and free-energy. This two-step procedure is proved to be much more efficient than direct molecular dynamics simulations combined to thermodynamic integration schemes. The approach is shown to be relevant and accurate for prototype polar solvents such as the Stockmayer solvent or acetonitrile. For water, although correct for neutral or moderately charged solute, it tends to underestimate the tetrahedral solvation structure around H-bonded solutes, such as spherical ions. This can be corrected by introducing suitable three-body correlation terms that restore both an accurate hydration structure and a satisfactory energetics.  相似文献   

9.
Implicit solvent simulations are those in which solvent molecules are not explicitly simulated, and the solute-solute interaction potential is modified to compensate for the implicit solvent effect. Implicit solvation is well known in Brownian dynamics of dilute solutions but offers promise to speed up many other types of molecular simulations as well, including studies of proteins and colloids where the local density can vary considerably. This work examines implicit solvent potentials within a more general coarse-graining framework. While a pairwise potential between solute sites is relatively simple and ubiquitous, an additional parametrization based on the local solute concentration has the possibility to increase the accuracy of the simulations with only a marginal increase in computational cost. We describe here a method in which the radial distribution function and excess chemical potential of solute insertion for a system of Lennard-Jones particles are first measured in a fully explicit, all-particle simulation, and then reproduced across a range of solute particle densities in an implicit solvent simulation.  相似文献   

10.
利用平衡态分子动力学方法(EMD)模拟了纳米尺寸限制球壳内I2在Ar溶液中的振动能量转移. 计算并讨论了I2振动能量弛豫时间T1随球壳半径、溶剂密度的变化规律. 通过分子间相互作用分析, 在原子、分子水平上, 揭示了随着球壳半径的减小, T1呈逐渐增大趋势的原因. 结果表明, 球壳的几何限制效应和表面作用对受限溶液密度分布的影响较大, 从而导致溶质振动弛豫的显著变化. 此外, 非限制体系模拟显示, 非平衡态分子动力学(NEMD)方法可以得到与平衡态分子动力学方法较一致的振动能量弛豫时间T1.  相似文献   

11.
Solvation of heterocyclic amines in CO(2)-expanded methanol (MeOH) has been explored with UV/vis spectroscopy and molecular dynamics (MD) simulations. A synergistic study of experiments and simulations allows exploration of solute and solvent effects on solvation and the molecular interactions that affect absorption. MeOH-nitrogen hydrogen bonds hinder the n-pi* transition; however, CO(2) addition causes a blue shift relative to MeOH because of Lewis acid/base interactions with nitrogen. Effects of solute structure are considered, and very different absorption spectra are obtained as nitrogen positions change. MD simulations provide detailed solvent clustering behavior around the solute molecules and show that the local solvent environment and ultimately the spectra are sensitive to the solute structure. This work demonstrates the importance of atomic-level information in determining the structure-property relationships between solute structure, local salvation, and solvatochromism.  相似文献   

12.
We investigate thoroughly the effect of confinement and solute topology on the orientational dynamics of water molecule in the interplate region between two nanoscopic hydrophobic paraffinlike plates. Results are obtained from molecular dynamics simulations of aqueous solutions of paraffinlike plates in the isothermal-isobaric ensemble. An analysis of survival time auto correlation function shows that the residence time of the water molecule in the confined region between two model nanoscopic hydrophobic plates depends on solute surface topology (intermolecular distance within the paraffinlike plate). As expected, the extent of confinement also changes the residence time of water molecules considerably. Orientational dynamics was analyzed along three different directions, viz., dipole moment, HH, and perpendicular to molecular plane vectors. It has been demonstrated that the rotational dynamics of the confined water does not follow the Debye rotational diffusion model, and surface topology of the solute plate and the extent of confinement have considerable effect on the rotational dynamics of the confined water molecules.  相似文献   

13.
The NMR spectra of n-pentane as solute in the liquid crystal 5CB are measured at several temperatures in the nematic phase. Atomistic molecular dynamics simulations of this system are carried out to predict the dipolar couplings of the orientationally ordered pentane, and the spectra predicted from these simulations are compared with the NMR experimental ones. The simulation predictions provide an excellent starting point for analysis of the experimental NMR spectra using the covariance matrix adaptation evolutionary strategy. This shows both the power of atomistic simulations for aiding spectral analysis and the success of atomistic molecular dynamics in modeling these anisotropic systems.  相似文献   

14.
A polarizable solute model, based on the empirical valence bond approach, is developed and applied to electron transfer (ET) reactions in polarizable and flexible water solvents. The polarization effect is investigated in comparison with a nonpolarizable solute and solvent model. With free energy curves constructed by a molecular dynamics simulation, the activation energy barrier and the reorganization energy related to ET processes are investigated. The present simulation results show that the activation energy barrier becomes larger in the polarizable model than in the nonpolarizable model and that this makes the ET rate slower than that with the nonpolarizable model. It is shown that the effect of the electronic energy difference of solute molecule on free energy profiles is remarkable and that, corresponding to this effect, the reorganization energy is significantly modified. These results indicate that the process of solvent polarization by the polarized solute to enhance the solute-solvent interaction is a key factor and that treating the polarization of both solute and solvent at the same time is essential. Also, the polarization effect on the diffusive motion of the solute molecule in the polarization solvent is studied. The polarized solute molecule shows slower diffusive motion compared with that in the nonpolarizable model.  相似文献   

15.
Solvation in supercritical water under equilibrium and nonequilibrium conditions is studied via molecular dynamics simulations. The influence of solute charge distributions and solvent density on the solvation structures and dynamics is examined with a diatomic probe solute molecule. It is found that the solvation structure varies dramatically with the solute dipole moment, especially in low-density water, in accord with many previous studies on ion solvation. This electrostrictive effect has important consequences for solvation dynamics. In the case of a nonequilibrium solvent relaxation, if there are sufficiently many water molecules close to the solute at the outset of the relaxation, the solvent response measured as a dynamic Stokes shift is almost completely governed by inertial rotations of these water molecules. By contrast, in the opposite case of a low local solvent density near the solute, not only rotations but also translations of water molecules play an important role in solvent relaxation dynamics. The applicability of a linear response is found to be significantly restricted at low water densities.  相似文献   

16.
Cross-linked enzyme crystals (CLECs) enclose an extensive regular matrix of chiral solvent-filled nanopores, via which ions and solutes travel in and out. Several cross-linked enzyme crystals have recently been used for chiral separation and as biocatalysts. We studied the dynamics of solute transport in orthorhombic d-xylose isomerase (XI) crystals by means of Brownian dynamics (BD) and molecular dynamics (MD) simulations, which show how the protein residues influence the dynamics of solute molecules in confined regions inside the lattice. In the BD simulations, coarse-grained beads represent solutes of different sizes. The diffusion of S-phenylglycine molecules inside XI crystals is investigated by long-time MD simulations. The computed diffusion coefficients within a crystal are found to be orders of magnitude lower than in bulk water. The simulation results are compared to the recent experimental studies of diffusion and reaction inside XI crystals. The insights obtained from simulations allow us to understand the nature of solute-protein interactions and transport phenomena in CLECs, which is useful for the design of novel nanoporous biocatalysts and bioseparations based on CLECs.  相似文献   

17.
Computer simulation methods are becoming increasingly widespread as tools for studying the structure and dynamics of lipid bilayer membranes. The length scale and time scale accessible to atomic-level molecular dynamics simulations are rapidly increasing, providing insight into the relatively slow motions of molecular reorientation and translation and demonstrating that effects due to the finite size of the simulation cell can influence simulation results. Additionally, significant advances have been made in the complexity of membrane systems studied, including bilayers with cholesterol, small solute molecules, and lipid-protein and lipid-DNA complexes. Especially promising is the progress that continues to be made in the comparison of simulation results with experiment, both to validate the simulation algorithms and to aid in the interpretation of existing experimental data.  相似文献   

18.
采用量子力学/分子动力学方法研究了具体溶剂分子结构对溶质光谱行为的静电影响. 通过拟合溶质所处外电场和引入溶剂分子极化率, 考虑了溶质溶剂分子之间的相互极化效应, 得到合理的溶质和溶剂分子的电荷分布. 经过严格推导发现, 在传统的显溶剂模型中, 平衡和非平衡溶剂化能表达式均未考虑溶剂分子永久偶极弹簧能的贡献. 因此, 在正确计算永久偶极弹簧能的基础上, 重新建立了溶剂化能的表达式和新的吸收/发射光谱移动公式. 采用修改后的ASEP/MD程序, 计算得到了与实验值比较吻合的丙酮在水溶液中n→π*跃迁的光谱移动值, 验证了新公式的合理性.  相似文献   

19.
Woodhead JL  Hall CK 《Macromolecules》2011,44(13):5443-5451
We use discontinuous molecular dynamics (DMD) computer simulation to investigate the encapsulation efficiency and micellar structure of solute-carrying block copolymer nanoparticles as a function of packing fraction, polymer volume fraction, solute mole fraction, and the interaction parameters between the hydrophobic head blocks and between the head and the solute. The encapsulation efficiency increases with increasing polymer volume fraction and packing fraction but decreases with increasing head-head interaction strength. The latter is due to an increased tendency for the solute to remain on the micelle surface. We compared two different nanoparticle assembly methods, one in which the solute and copolymer co-associate and the other in which the copolymer micelle is formed before the introduction of solute. The assembly method does not affect the encapsulation efficiency but does affect the solute uptake kinetics. Both head-solute interaction strength and head-head interaction strength affect the density profile of the micelles; increases in the former cause the solute to distribute more evenly throughout the micelle, while increases in the latter cause the solute to concentrate further from the center of the micelle. We explain our results in the context of a model of drug insertion into micelles formulated by Kumar and Prud'homme; as conditions become more conducive to micelle formation, a stronger energy barrier to solute insertion forms which in turn decreases the encapsulation efficiency of the system.  相似文献   

20.
One‐step perturbation is an efficient method to estimate free energy differences in molecular dynamics (MD) simulations, but its accuracy depends critically on the choice of an appropriate, possibly unphysical, reference state that optimizes the sampling of the physical end states. In particular, the perturbation from a polar moiety to a nonpolar one and vice versa in a polar environment such as water poses a challenge which is of importance when estimating free energy differences that involve entropy changes and the hydrophobic effect. In this work, we systematically study the performance of the one‐step perturbation method in the calculation of the free enthalpy difference between a polar water solute and a nonpolar “water” solute molecule solvated in a box of 999 polar water molecules. Both these polar and nonpolar physical reference states fail to predict the free enthalpy difference as obtained by thermodynamic integration, but the result is worse using the nonpolar physical reference state, because both a properly sized cavity and a favorable orientation of the polar solute in a polar environment are rarely, if ever, sampled in a simulation of the nonpolar solute in such an environment. Use of nonphysical soft‐core reference states helps to sample properly sized cavities, and post‐MD simulation rotational and translational sampling of the solute to be perturbed leads to much improved free enthalpy estimates from one‐step perturbation. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号