首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a theory for the dielectric constant of materials made of parallel infinite one-dimensional chains of dipoles. Each dipole is allowed to rotate in three dimensions. Monte Carlo simulations show that the Kirkwood factor of the chain grows with increasing dipole moment much faster than in the case of three-dimensional polar fluids. With increasing dipole moment or cooling the one-dimensional chain undergoes a continuous order-disorder transition to the ferroelectric phase, in which the dielectric constant is limited by the size of ferroelectric domains along the chain.  相似文献   

2.
The modular software MOLSIM for all‐atom molecular and coarse‐grained simulations is presented with focus on the underlying concepts used. The software possesses four unique features: (1) it is an integrated software for molecular dynamic, Monte Carlo, and Brownian dynamics simulations; (2) simulated objects are constructed in a hierarchical fashion representing atoms, rigid molecules and colloids, flexible chains, hierarchical polymers, and cross‐linked networks; (3) long‐range interactions involving charges, dipoles and/or anisotropic dipole polarizabilities are handled either with the standard Ewald sum, the smooth particle mesh Ewald sum, or the reaction‐field technique; (4) statistical uncertainties are provided for all calculated observables. In addition, MOLSIM supports various statistical ensembles, and several types of simulation cells and boundary conditions are available. Intermolecular interactions comprise tabulated pairwise potentials for speed and uniformity and many‐body interactions involve anisotropic polarizabilities. Intramolecular interactions include bond, angle, and crosslink potentials. A very large set of analyses of static and dynamic properties is provided. The capability of MOLSIM can be extended by user‐providing routines controlling, for example, start conditions, intermolecular potentials, and analyses. An extensive set of case studies in the field of soft matter is presented covering colloids, polymers, and crosslinked networks. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

3.
A large anomalous dipole moment has previously been reported for nanocrystals with a cubic crystal lattice. By considering truncations of a regular tetrahedral CdS nanocrystal, the hypothesis that shape asymmetry is responsible for the observed dipole moment was tested and verified. The location and degree of the truncations were systematically varied, and corresponding dipole moments were calculated by using a PM3 semiempirical quantum mechanical algorithm. The calculated dipole moment of 50-100 D is in good agreement with a variety of experimental data. This approach also affords simple evaluation of the potential effect of the media for aqueous dispersions of nanocrystals. The substitution of the truncated corner(s) by molecules of H2O typically results in a substantial increase of the dipole moment, and often, in the reversal of its direction. The molecular modeling approach presented here is suitable for detailed theoretical studies of the dipole moments of II-VI and other nanoparticles and interparticle interactions in fluids. The data obtained from these calculations can be the starting point for modeling of agglomeration and self-organization behavior of large nanoparticle ensembles.  相似文献   

4.
We simulate structural phase behavior of polymer-grafted colloidal particles by molecular Monte Carlo technique. The interparticle potential, which has a finite repulsive square-step outside a rigid core of the colloid, was previously confirmed via numerical self-consistent field calculation. This model potential is purely repulsive. We simulate these model colloids in the canonical ensemble in two and three dimensions and find that these particles containing no interparticle attraction self-assemble and align in a string-like assembly, at low temperature and high density. This string-like colloidal assembly is related to percolation phenomena. Analyzing the cluster size distribution and the average string length, we build phase diagrams and discover that the average string length diverges around the region where the melting transition line and the percolation transition line cross. This result is similar to Ising spin systems, in which the percolation transition line and the order-disorder line meet at a critical point.  相似文献   

5.
The electrostatic interactions in a reverse micelle containing a small-ionized protein are studied by Monte Carlo simulation. The electrostatic contribution to the potential of mean force of the protein in the reverse micelle is determined for a neutral protein, a uniformly charged protein, and a uniformly charged protein with a dipole moment. The effect of addition of a simple electrolyte is studied. While symmetrically distributed micellar charge exerts no force on enclosed ionic species, the protein is driven to the micellar wall due to interactions with simple ions. Protein binding to the inner wall of the micelle can be regulated by added salt. The presence of a dipole drives the protein further to the wall. These effects are studied for several proteins characterized by different charges and dipole moments. For a weakly charged protein with a strong dipole moment the contribution of dipolar interaction to the free energy can represent a major driving force for protein solubilization in the microemulsion.  相似文献   

6.
Summary: This paper introduces a simple mean‐field theory for gels with magnetic properties. The main emphasis in this paper is the discussion of the scattering properties. Therefore, a simple model is introduced, such that the chains carry magnetic moments along their main axis. Naturally these magnetic moments interact sensitively to theory orientation with each other. Thus a distinguished interplay between chain and dipole orientation induces strong coupling between the macroscopic deformation and magnetic properties. These effects can be experimentally demonstrated with scattering methods. Here some mean‐field expressions for the structure factors are predicted and discussed in some detail.

The configurations adopted by polymers possessing a magnetic moment and undergoing dipole‐dipole interactions.  相似文献   


7.
We report the results of a Monte Carlo simulation of polar particles interacting via the Gay-Berne potential combining dipole-dipole interactions. Simulations were carried out on a system of 256 particles with either a zero dipole moment or longitudinal dipole moment located at the centre of the molecule. The system was found to spontaneously form nematic, smectic and crystal phases from an isotropic phase with a random configuration as temperature was decreased, irrespective of values of the dipole moment. The results do not give any indication of a net polarization even in the system with a strong dipole moment (μ* = 2.00). The transition temperature from the isotropic to nematic phase is not sensitive to the value of the dipole moment within the limits of statistical error, while the transition from the nematic to smectic phase depends on the strength of dipole moment. At lower temperatures forming the smectic or the crystal phase, the translational order along the director increases with increasing dipole moment. The dipolar interactions contribute to the long range ordering.  相似文献   

8.
The DC electric susceptibilities of unsolvated glycine-based peptides, WGn (W = tryptophan and G = glycine) with n = 1-5, have been measured by deflection of a molecular beam in an electric field. These are the first electric deflection measurements performed on peptides. At 300 K the susceptibilities are in the range of 200-400 A(3). By far the largest contribution to the susceptibilities is from the permanent dipole moment of the peptides. The results indicate that the peptides do not have rigid conformations with fixed dipoles. Instead the dipole is averaged as the peptides explore their energy landscape. For a given WGn peptide, all molecules have almost the same average dipole, which suggests that they all explore a similar energy landscape on the microsecond time scale of the measurement. The measured susceptibilities are in good overall agreement with values calculated from the average dipole moment deduced from Monte Carlo simulations.  相似文献   

9.
We investigate the interparticle interactions, phase behavior, and structure of microsphere-nanoparticle mixtures that possess high size and charge asymmetry. We employ a novel Monte Carlo simulation scheme to calculate the effective microsphere interactions in suspension, yielding new insight into the origin of the experimentally observed behavior. The initial settling velocity, final sediment density, and three-dimensional structure of colloidal phases assembled from these binary mixtures via gravitational settling of silica microspheres in water and index-matched solutions exhibit a strong compositional dependence. Confocal laser scanning microscopy is used to directly image and quantify their structural evolution during assembly. Below a lower critical nanoparticle volume fraction (phi(nano) < phi(L,C)), the intrinsic van der Waals attraction between microspheres leads to the formation of colloidal gels. These gels exhibit enhanced consolidation as phi(nano) approaches phi(L,C). When phi(nano) exceeds phi(L,C), an effective repulsion arises between microspheres due to the formation of a dynamic nanoparticle halo around the colloids. From this stable fluid phase, the microspheres settle into a crystalline array. Finally, above an upper critical nanoparticle volume fraction (phi(nano) > phi(U,C)), colloidal gels form whose structure becomes more open with increasing nanoparticle concentration due to the emergence of an effective microsphere attraction, whose magnitude exhibits a superlinear dependence on phi(nano).  相似文献   

10.
We have performed Monte Carlo simulations of the self-organization of large collections of charged disks of various electric charges to probe the influence of electrostatic coupling on the structure and the mechanical stability of aqueous dispersions of charged anisotropic nanoparticles in the presence of salt. A hierarchical approach of the long-range Coulombic potential was used to perform such Monte Carlo simulations of a large number of charged species. By analyzing the influence of the net electric charge of the disks on their self-organization, we detected a negative contribution to the mean force potential resulting from their electrostatic coupling. In addition, it has been shown that the same electrostatic coupling restricts the spatial extend of locally ordered microdomains within dilute dispersions of charged anisotropic colloids.  相似文献   

11.
The effective interaction between two colloidal particles in a bath of monovalent co- and counterions is studied by means of lattice Monte Carlo simulations with the primitive model. The internal electrostatic energy as a function of the colloid distance is studied fixing the position of the colloids. The free energy of the whole system is obtained introducing a bias parabolic potential, that allows us to sample efficiently small separations between the colloidal particles. For small charges, both the internal and free energy increase when the colloids approach each other, resulting in an effective repulsion driven by the electrostatic repulsion. When the colloidal charge is large enough, on the other hand, the colloid-ion coupling is strong enough to form double layers. The internal energy in this case decreases upon approaching the colloids because more ions enter the double layer. This attractive contribution to the interaction between the colloids is stronger for larger charges and larger ionic concentrations. However, the total free energy increases due to the loss of ionic entropy, and resulting finally in a repulsive interaction potential driven by the entropic contributions. The loss of ionic entropy can be almost quantitatively reproduced with the ideal contribution, the same level of approximation as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The overall behavior is captured by the DLVO theory qualitatively, and a comparison is made with the functional form predicted by the theory, showing moderate agreement.  相似文献   

12.
The importance of hydrophobic interactions in determining polymer adsorption and wrapping of carbon nanotubes is still under debate. In this work, we concentrate on the effect of short-ranged weakly attractive hydrophobic interactions between polymers and nanotubes (modeled as an infinitely long and smooth cylindrical surface), neglecting all other interactions apart for chain flexibility. Using coarse-grained Monte Carlo simulation of such simplified systems, we find that uniform adsorption and wrapping of the nanotube occur for all degrees of chain flexibility for tubes with sufficiently large outer radii. However, the adsorbed conformations depend on chain stiffness, ranging from randomly adsorbed conformations of the flexible chain to perfect helical or multihelical conformations (in the case of more concentrated solutions) of the rigid chains. Adsorption appears to occur in a sequential manner, wrapping the nanotube nearly one monomer at a time from the point of contact. Once adsorbed, the chains travel on the surface of the cylinder, retaining their helical conformations for the semiflexible and rigid chains. Our findings may provide additional insight to experimentally observed ordered polymer wrapping of carbon nanotubes.  相似文献   

13.
The macroscopic rheological behavior of colloidal gels arises from the micromechanical properties of the gel backbone, which are governed by nanoscale particle interactions. These colloidal interactions have been commonly understood in terms of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Recent work has shown, however, that nonidealities, such as surface roughness and charge nonuniformity, may cause the particle interactions to significantly deviate from DLVO predictions at near-contact separations. Here we present novel techniques for directing the assembly of colloidal aggregates that mimic the gel backbone, based on optical micromanipulation of multiple particles using laser tweezers. This also provides an in situ method for measuring near-contact interactions via single-bond rupture forces. We find that PMMA particles aggregated in the presence of nonorganic salts exhibit interparticle bond strengths more than 10 times greater than those predicted by DLVO theory. However, good agreement is found with DLVO predictions when the anionic surfactant sodium dodecyl sulfate (SDS) is used as the flocculant.  相似文献   

14.
15.
The aggregation stability of aqueous dispersions of microcrystalline cellulose (MCC) was studied by the flow ultramicroscopy in a wide range of pH (1–11). The calculations of the molecular and ion-electrostatic components of the interparticle interaction energy, which were performed according to the DLVO theory with and without allowance for the particle conductivity, demonstrated that, in most cases, the loss of the aggregation stability can not be explained without taking into account the concept of additional attraction forces between the MCC particles. It was assumed that such forces could be attributed to the dipole–dipole interactions or hydrogen bonding between hydrated particles.  相似文献   

16.
The present work studies the role of ionic size in the interactions between the electrical double layers of colloids immersed into electrolyte solutions of monovalent ions. Such interactions are studied by means of Monte Carlo (MC) simulations and the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Despite the omission of the steric effects and some other features of real electrolyte solutions, DLVO theory is known to work qualitatively well for 1:1 electrolyte solutions. However, this affirmation is based on previous tests where an ionic diameter around 0.4 nm was taken for all ionic species. In contrast, some experimental studies suggest that larger hydrated ions should be considered and even specified for each type of ion. In this work, the importance of ionic size is analyzed by applying the primitive model of electrolyte to the intermediate region between a pair of equally charged infinite planar surfaces. The double layer interactions were calculated from the ionic densities at the distance of closest approach to the charged surfaces, this method constitutes an alternative to the traditional calculations at the midplane. Our MC simulations predict the existence of negative net pressures for monovalent electrolytes in the case of zero charge density. In addition, MC simulations reveal some disagreements with theoretical predictions for ionic diameters larger than 0.4 nm. These discrepancies can become significant if surface charge density is large enough due to the restructuration of the double layer. The physical mechanisms for these deviations are also discussed.  相似文献   

17.
A model is proposed to rapidly evaluate the individual hydrogen bonding energies in linear water chains. We regarded the two O--H bonds of a water molecule as two dipoles. The magnitude of the O--H bond dipole mo- ment can be varied due to the other water molecules' presence. An analytic potential energy function, which explicitly contains the permanent dipole-dipole interactions, the polarization interactions, the van der Waals interactions and the covalent interactions, was therefore established. The individual hydrogen bonding energies in a series of linear water chains were evaluated via the analytic potential energy function and compared with those obtained from the CP-corrected MP2/aug-cc-pVTZ calculations. The results show that the analytic potential energy function not only can produce the individual hydrogen bonding energies as accurately as the CP-corrected MP2/aug-cc-pVTZ method, but is very efficient as well, demonstrating the model proposed is reasonable and useful. Based on the individual hy- drogen bonding energies obtained, the hydrogen bonding cooperativity in the linear water chains was explored and the natures of the hydrogen bonding in these water chains were discussed.  相似文献   

18.
A new, efficient potential energy function for liquid water is presented here. The new model, which is referred here as the soft sticky dipole-quadrupole-octupole (SSDQO) model, describes a water molecule as a Lennard-Jones sphere with point dipole, quadrupole, and octupole moments. It is a single-point model and resembles the hard-sphere sticky dipole potential model for water by Bratko et al. [J. Chem. Phys. 83, 6367 (1985)] and the soft sticky dipole model by Ichiye and Liu [J. Phys. Chem. 100, 2723 (1996)] except now the sticky potential consists of an approximate moment expansion for the dimer interaction potential, which is much faster than the true moment expansion. The object here is to demonstrate that the SSDQO potential energy function can accurately mimic the potential energy function of a multipoint model using the moments of that model. First, the SSDQO potential energy function using the dipole, quadruple, and octupole moments from SPC/E, TIP3P, or TIP5P is shown to reproduce the dimer potential energy functions of the respective multipoint model. In addition, in Monte Carlo simulations of the pure liquid at room temperature, SSDQO reproduces radial distribution functions of the respective model. However, the Monte Carlo simulations using the SSDQO model are about three times faster than those using the three-point models and the long-range interactions decay faster for SSDQO (1/r(3) and faster) than for multipoint models (1/r). Moreover, the contribution of each moment to the energetics and other properties can be determined. Overall, the simplicity, efficiency, and accuracy of the SSDQO potential energy function make it potentially very useful for studies of aqueous solvation by computer simulations.  相似文献   

19.
In this paper, we present a convenient and reliable method to organize small gold nanoparticles (d(CORE) = 1.5 nm) into linear chains with precisely controlled interparticle spacing over a range of 1.5-2.8 nm through biomolecular nanolithography. Controlling the feature separations of 1 to a few nanometers with angstrom-level precision is a key requirement in electronic and optical applications of nanostructures to tune the properties of the nanostructures and manipulate the interactions between neighboring structures. Here, chains are formed in solution by utilizing functional-group-directed self-assembly to organize ligand-stabilized gold nanoparticles onto DNA templates. The spacing between neighboring nanoparticles can be controlled chemically and tuned at the molecular level by utilizing nanoparticles possessing ligand shells of varying thickness to achieve angstrom-level resolution at spacings of 1.5, 2.1, and 2.8 nm. The small standard deviation (< or = 20%) in the values for the interparticle spacing illustrates the reproducibility of the approach. Because the interparticle spacing is enforced by the ligand shell rather than the scaffold, the spacing is uniform even in nonlinear sections of the chain. We further show that the assembly process is robust and produces extended linear nanoparticle chains of up to 1 microm in length and a total coverage of > 90%. All structures and interparticle spacings were analyzed using transmission electron microscopy. Our results demonstrate the potential of scaffold-assisted assembly approaches for patterning features with tunable dimensions on a length scale that is important for future applications of these materials in nanoscale electronics and optics.  相似文献   

20.
We report a novel strategy on the controlled assembly of gold nanoparticles (NPs) at the air-water interface by designing a concentration gradient of electrolytes utilizing volatile weak acidic electrolytes. Films of close-packed Au NPs can be facilely obtained by exposing citrate-protected gold colloids to the vapor of formic acid for several hours in an airtight desiccator at room temperature. Both the higher interfacial concentration of formic acid and the buffer effect of citrate solution play the key roles in the assembly. They engender a gradient distribution of hydrogen ions such that to trigger the interfacial assembly of gold NPs while preventing the bulk colloid from aggregation and coagulation. Comparative investigations have also been performed either using other volatile electrolytes like weaker acetic acid and stronger hydrochloric acid or adding an electrolyte directly into the colloids. The as-prepared films of gold NPs can serve as good substrates for surface-enhanced Raman scattering (SERS). This strategy has also been applied to the assembly of some other NPs like colloidal Pt at the air-water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号