首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclopropanation of allylic alcohols with Et2Zn and CH2I2 in the presence of a catalytic amount of fluorous disulfonamide 3 afforded the corresponding cyclopropylmethanols in 69-96% yield with 49-83% ee. The fluorous ligand 3 was readily recovered from the reaction mixture by the fluorous solid-phase extraction (FSPE) and could be reused without a significant loss of the catalytic activity and enantioselectivity.  相似文献   

2.
2,2,2-Trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol, and nonafluoro-tert-butyl alcohol were used as precursors for the preparation of the appropriate bis(polyfluoroalkoxymethyl)carbinols [(RFHOCH2)2CHOH, 1a-c, RFH = (a) CF3CH2, (b) (CF3)2CH, and (c) (CF3)3C] and the corresponding mesylates [(RFHOCH2)2CHOSO2CH3, 2a-c]. This novel design paradigm is introduced to eliminate the persistence and bioaccumulation problems of fluorous chemistry, which are associated with the use of longer linear perfluoroalkyl groups (e.g. Rfn ≥ n-C8F17, n-C7F15). Secondary mesylates 2a,b and the primary tosylate [(CF3)3COCH2CH2OTs, 2d] displayed acceptable reactivity towards azide and imidazole nucleophiles to allow the syntheses of novel fluorous azides, which on hydrogenolysis with H2/Pd-C offered fluorous amines [(RFHOCH2)2CHNH2, 8a,b], and 1-(polyfluoroalkyl)imidazoles (5a,b,d), respectively, while 2c showed no reactivity due to steric hindrance. The reaction of 8a,b with formaline, glyoxal and hydrochloric acid gave symmetrical 1,3-dialkylated imidazolium chlorides (9a,b), while 5a,b,d were effectively alkylated using n-C8F17(CH2)3I, methyl iodide, 2-bromoethanol, and 2d to yield the corresponding 1,3-dialkylimidazolium iodides, bromides, and tosylates (7aa-ec). Some physical properties of new compounds including mp, bp and solubility patterns were also analyzed; and the fluorophilicity values of 1a-c, and 2a-c were experimentally determined by GC and/or 19F NMR spectroscopy.  相似文献   

3.
For N-(thio)phosphorylthioureas of the common formula RC(S)NHP(X)(OiPr)2HLI (R = N-(4′-aminobenzo-15-crown-5), X = S), HLII (R = N-(4′-aminobenzo-15-crown-5), X = O), HLIII (R = PhNH, X = S), HLIV (R = PhNH, X = O), and (N,N′-bis-[C(S)NHP(S)(OiPr)2]2-1,10-diaza-18-crown-6) H2LV, salts LiLI,III,IV, NaLIIV, KLIIVM2LV (M = Li+, Na+, K+), Ba(LI,III,IV)2, and BaLV have been synthesized and investigated. Compounds NaLI,II quantitatively drop out as a deposit in ethanol medium, allowing the separation of Na+ and K+ cations. This effect is not displayed for the other compounds. The crystal structures of HLIII and the solvate of the composition [K(Me2CO)LIII] have been investigated by X-ray crystallography.  相似文献   

4.
A fluorous approach to the chemistry of boronic acids and its application in fluorous-phase techniques are described. Treatment of fluorous bromosilane 2 with allyl Grignard reagent followed by dihydroxylation provided fluorous diol 1. A series of boronic acids were attached to 1 by esterification. The formed fluorous boronates 4 were moisture sensitive and thus their synthetic potentials were limited. Thus a fluorous pinacol, 5, was designed and synthesized by treatment of fluorous bromosilane 2 with excess 2,3-dimethyl-2-butyenylmagnesium bromide 9 to afford fluorous tetramethyl ethene 8, and was dihydroxylated. Compound 5 was successfully used to prepare fluorous boronates in a one-pot process from organic bromides. We have demonstrated that olefin cross-metathesis can be carried out in a fluorous version. It is noteworthy that all of the fluorinated compounds reported in this paper were purified by simple liquid extraction.  相似文献   

5.
Yangen Huang 《Tetrahedron》2004,60(38):8341-8346
Fluorous glycol derivatives 5 were prepared and evaluated as reagents for the protection of carbonyl groups for use in fluorous synthesis. The acetals formed from fluorous diol 5b (Rf=n-C8F17) with carbonyl compounds can be separated and purified by simple fluorous-organic extraction.  相似文献   

6.
7.
An efficient route to the novel tridentate phosphine ligands RP[CH2CH2CH2P(OR′)2]2 (I: R = Ph; R′ = i-Pr; II: R = Cy; R′ = i-Pr; III: R = Ph; R′ = Me and IV: R = Cy; R′ = Me) has been developed. The corresponding ruthenium and iron dicarbonyl complexes M(triphos)(CO)2 (1: M = Ru; triphos = I; 2: M = Ru; triphos = II; 3: M = Ru; triphos = III; 4: M = Ru; triphos = IV; 5: M = Fe; triphos = I; 6: M = Fe; triphos = II; 7: M = Fe; triphos = III and 8: M = Fe; triphos = IV) have been prepared and fully characterized. The structures of 1, 3 and 5 have been established by X-ray diffraction studies. The oxidative addition of MeI to 1-8 produces a mixture of the corresponding isomeric octahedral cationic complexes mer,trans-(13a-20a) and mer,cis-[M(Me)(triphos)(CO)2]I (13b-20b) (M = Ru, Fe; triphos = I-IV). The structures of 13a and 20a (as the tetraphenylborate salt (21)) have been verified by X-ray diffraction studies. The oxidative addition of other alkyl iodides (EtI, i-PrI and n-PrI) to 1-8 did not afford the corresponding alkyl metal complexes and rather the cationic octahedral iodo complexes mer,cis-[M(I)(triphos)(CO)2]I (22-29) (M = Ru, Fe; triphos = I-IV) were produced. Complexes 22-29 could also be obtained by the addition of a stoichiometric amount of I2 to 1-8. The structure of 22 has been verified by an X-ray diffraction study. Reaction of 13a/b-20a/b with CO afforded the acetyl complexes mer,trans-[M(COMe)(triphos)(CO)2]I, 30-37, respectively (M = Ru, Fe; triphos = I-IV). The ruthenium acetyl complexes 30-33 reacted slowly with 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) even in boiling acetonitrile. Under the same conditions, the deprotonation reactions of the iron acetyl complexes 34-37 were completed within 24-40 h to afford the corresponding zero valent complexes 5-8. It was not possible to observe the intermediate ketene complexes. Tracing of the released ketene was attempted by deprotonation studies on the labelled species mer,trans-[Fe(COCD3)(triphos)(CO)2]I (38) and mer,trans-[Fe(13COMe)(triphos)(CO)2]I (39).  相似文献   

8.
The aldehydic benzyl ethers PhCH2OC6H4CHO (2; a/b = para/meta series) are readily available from the corresponding phenols and react with Wittig reagents derived from [Ph3PCH2CH2Rf8]+I (Rf8=(CF2)7CF3) to give PhCH2OC6H4CHCHCH2Rf8 (86-93%, Z major). Reactions with H2 over Pd/C give the fluorous phenols HOC6H4(CH2)3Rf8(4a,b; 87-91%). Condensations with PCl3 and NEt3 (3.0:1.0:3.3 mol ratio) give the fluorous phosphites P[OC6H4(CH2)3Rf8]3(5a,b; 92-94%), but traces of 4a,b are difficult to remove. The phthalate-based benzyl ethers PhCH2OC6H3(COOR)2 (7; ,5/3,4 OC6H3-3,n-(R)2 series) are easily accessed and reduced with LiAlH4 to the diols PhCH2OC6H3(CH2OH)2(8c,d; 89-90%). Diol 8c and the Dess-Martin periodinane react to give the dialdehyde PhCH2OC6H3(CHO)2 (9c; 95%). This is elaborated by a sequence analogous to 2→4→5 to the fluorous phenol HOC6H3((CH2)3Rf8)2 (11c; 97%/96%, two steps) and phosphite P[OC6H3((CH2)3Rf8)2]3 (12c, 92%), from which traces of 11c are difficult to remove. Diol 8d can be similarly elaborated to 11d, but the dialdehyde 9d is labile and the combined yield of the Dess-Martin/Wittig steps is 32%. The CF3C6F11/toluene partition coefficients of 11c,d, and 12c (two pony tails; 70:30, 72:28, 92:8) are much higher than those of 4a and b (one pony tail; 12:88, 14:86).  相似文献   

9.
Six- and eight-membered cyclic silicates with reactive SiH or Si-vinyl functional groups have been prepared: hexakis(dimethylsiloxy)cyclotrisiloxane (I), hexakis(vinyldimethylsiloxy)cyclotrisiloxane (II), octakis(dimethylsiloxy)cyclotetrasiloxane (III) and octakis(vinyldimethylsiloxy)cyclotetrasiloxane (IV). Reaction of pseudo wollastonite (Ca3Si3O9) with dimethylchlorosilane or vinyldimethylchlorosilane gives I and II, respectively. IV has been prepared similarly by reaction of octakis[chloro calcium oxy]cyclotetrasilicate [Ca8Si4O12Cl8] with vinyldimethylchlorosilane. On the other hand, acid catalyzed siloxane exchange between tetramethyldisiloxane and octakis(trimethylsiloxy)cyclotetrasiloxane (V) gave III. Cyclic silicates (I-VI) are surprisingly resistant to acid catalyzed ring opening polymerization. In addition, II, IV, V and hexakis(trimethylsiloxy)cyclotrisiloxanes (VI) are resistant to phosphazene P4-t-Bu superbase catalyzed ring opening polymerization.  相似文献   

10.
The novel mixed ligand complexes [Ca(hfa)2(diglyme)(H2O)] (I), [Sr(hfa)2(diglyme)(H2O)] (II) and [Ba(hfa)2(diglyme)2] (III) (Hhfa = 1,1,1,5,5,5-hexafluoropentane-2,4-dione, diglyme = 2,5,8-trioxanonane) were synthesized by the reactions of the alkaline earth element (AEE) carbonates in n-hexane with a mixture of Hhfa and diglyme, and they were characterized by elemental analysis, 1H and 13C NMR, and FTIR spectroscopy. The crystal structures of IIII, consisting of mononuclear isolated molecules, have been determined. The thermal behavior and composition of the vapor phase have been studied for IIII by thermal analysis at low pressure and mass spectrometry using a Knudsen cell. The stability of the mixed ligand complexes [M(hfa)2(diglyme)n] to the removal of diglyme molecules under heating decreases in the row I > II ≈ III, and only I evaporates as the mixed ligand complex after water removal.  相似文献   

11.
A series of fluorinated bipyridine derivatives, (4,4′-bis(RfCH2OCH2)-2,2′-bpy) {Rf = n-C8F17 (1a), n-C9F19 (1b), n-C10F21 (1c), n-C11F23 (1d)} have been successfully synthesized using 4,4′-bis(bromomethylene)-2,2′-bpy and fluorinated alkoxides. Bpy 1a-d have been characterized by multi-nuclei (1H, 19F, and 13C) NMR, GC/MS and FTIR. The Cu complexes 2a-d could be generated in situ by stirring ligands 1a-d with CuBr·Me2S at room temperature, respectively. The 3-component systems 3c-d, CuBr·Me2S/Bpy (1c-d)/2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO), were successfully used to the aerobic oxidation of alcohols under the fluorous biphasic system (FBS). The resulting products from FBS could be easily recovered by two phase separation with high yields up to 8 runs (>90%). In order to avoid using the expensive fluorous solvents, systems 3a-d, CuBr·Me2S/Bpy (1a-d)/TEMPO, were also successfully shown to catalyze the aerobic alcohol oxidation under the thermomorphic condition (in C6H5Cl), and the yields of oxidation of 4-nitrobenzyl alcohol were close to 100% even after 8 runs. In particular, 3a was most effective under the thermomorphic mode in the chemoselectivity of aerobic oxidation of aliphatic primary alcohols to aldehydes without any overoxidized acids.  相似文献   

12.
Ring-opening metathesis polymerization (ROMP) of exo-N-(1-adamantyl)-7-oxanorbornene-5,6-dicarboximide (AdONDI) (3a), exo-N-cyclohexyl-7-oxanorbornene-5,6-dicarboximide (ChONDI) (3b) and exo-N-phenyl-7-oxanorbornene-5,6-dicarboximide (PhONDI) (3c) using well-defined alkylidene ruthenium catalysts (PCy3)2(CI)2RuCHPh (I) and (1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) (PCy3)CI2RuCHPh (II) was studied. The catalysts I and II gave polymers with around 70% and 50% trans vinylene content, respectively. The homopolymer of 3a had a Tg of 198 °C, while poly-3b showed a Tg of 122 °C. Copolymers of 3a, 3b and 3c with norbornene (NB) showed significant Tg increases over poly-NB.  相似文献   

13.
Di(tert-butylmethyl)ketazine (I) reacts with n-BuLi in a 1:1 molar ratio to give a monolithium salt (II). The reaction of II with tBu2SiF2 in n-hexane leads, even in a 1:1 molar ratio, to the formation of the isomeric five- and four-membered ring compounds 1 and 2. Compound 1 has an endocyclic imine and an exocyclic enamine unit. The opposite is found for 2. The acyclic monosubstitution product, tBu2SiFCH2-CtBuN-NCtBuCH3 (III) could not be isolated. It reacts with the lithium ketazide to give 1 or 2. I is reformed. The reaction in THF yields only the four-membered ring 2. In a comparable reaction of the lithium ketazide and (H3C)2SiF2, the substitution product 3 could be isolated. A possible formation mechanism for 2 includes an intermediate silene IV. Both compounds 1 and 2 react with H3C-OH under cleavage of the endocyclic Si-N-bond to give the addition product 5. The reaction mechanism includes a hydrogen shift from a nitrogen atom to a carbon atom via an imine-enamine tautomerism. In a 2:1 molar ratio, n-BuLi and the di(tert-butylmethyl)-ketazine (I) form the dilithium salt, 6. Compound 6 crystallizes from THF as trimer with four imine and two enamine units. A seven-membered ring (7) isomeric to 1 and 2 is the result of the reaction of 6 with tBu2SiF2. Compound 7 contains one imine and one enamine unit in the ring skeleton.The comparable reaction of the (CH3)3Si-substituted dilithium-di(tert-butylmethyl)ketazide and tBu2SiF2 yields the five-membered ring compound 8 with one endocyclic imine and one exocyclic enamine unit.Quantum chemical calculations of 1, 2, 7 and the intermediate silene IV have been carried out and show a low energy difference between the cyclic silyl-ketazine isomers.  相似文献   

14.
New bispyrenyl thioureas linked by polyethylene glycol (PEG) chains, L1-L3, and methoxy benzene pyrene thiourea, L4, were synthesized. Upon binding with F in CHCl3, L1-L3 exhibited strong excimer emission bands (IE) and weak monomer emission bands (IM), while L4 displayed the same intensity of both bands. However, little or no change was observed in fluorescence spectra of L1 upon adding OH, AcO, BzO, H2PO4, Cl, Br, and I. Therefore, only F induced the pyrene excimer formation. Job’s plots showed 1/1 or 2/2 complexation of L1 with F. Ratios of IE/IM of L1·F complex were dependent on the concentration of L1, implying that the dimerization of L1 proceeded via the intermolecular excimer formation. Among L1-L4, L1 possessed the highest binding constant and sensitivity toward F implying the importance of the linking PEG chain. L1 was demonstrated to be an excellent probe for F in CHCl3 with the detection limit as low as 46.2 μg/L.  相似文献   

15.
Three complexes of magnesium phthalocyaninato(2−) derivatives in the crystalline form, MgPc(H2O)·(C2H5)3N – (I), MgPc(H2O)2·2(C2H5)3N – (II) and MgPc(H2O)2 – (III), depending on the thermal recrystallisation conditions were obtained and structurally characterised. In complex I, the Mg center exhibits square-pyramidal (4 + 1) coordination environment, whereas in II and III the Mg center of MgPc the biaxial (4 + 2) coordination. Owing to the interaction of the positively charged Mg center with oppositely charged oxygen atom of water molecule in an axial position in I, the Mg atom is significantly displaced (0.451(2) Å) from the plane defined by four isoindole N atoms and leads to distortion of the planar Pc(2−) macrocycle to the saucer-shape form. In II and III due to the biaxial (4 + 2) coordination of the Mg center of MgPc, the Mg atom lies on a N4-isoindole plane. The triethylamine solvent molecules in I and II interact with mono or bis(aqua)magnesium phthalocyanine via   O–H??N hydrogen bonds. The axial Mg–O bond in I is significantly shorter than that in the II and III complexes. The strength of the Mg–O bond in these complexes is correlated with their thermal stability. From among the complexes only complex I exhibits an intense near-IR absorption band in the solid-state. The spectra of I, II and III in solution are very similar.  相似文献   

16.
Acetyl (Ia) and pivaloyl (Ib) triesters of the 1N,3N,5N-trihydroxy-1,3,5-triazin-2,4,6[1H,3H,5H]-trione (I) were synthesised. The spectrophotometric and potentiometric investigation of I revealed a weak acidic properties of triprotonic acid (pKa1=5.23, pKa2=6.32, and pKa3=7.93). The MS and TGA analyses of I indicated on hydroxyisocyanate as possible degradation product. The chelating ability of I with Fe(III)-ion was preliminary explored. IR measurements of aqueous solutions of I in the presence of Fe(III) ion showed the possible chelating ability of all hydroxamic moieties. The chemical structures and properties of investigated compounds were derived from the results of IR, 1H and 13C NMR, UV and MS spectrometric data, as well as thermogravimetric and potentiometric analysis.  相似文献   

17.
The oxidative system MTO/30%H2O2/HBF4/fluorous alcohol is promising for the selective synthesis of biologically important antimalarial dispiro-1,2,4,5-tetraoxanes by direct acid-catalysed cyclisation of various 4-substituted cyclohexanones (1, R=Me, Et, tBu, Ph, COOEt, CF3). The role of the substitutent at the 4-position was important in the selectivity of formation of tetraoxane (2, TO) with respect to hexaoxonane (3, HO). By the use of fluorinated alcohols and under the right reaction conditions, tetraoxanes 2 were selectively formed and synthesised in 46-86% isolated yield from 4-substituted cyclohexanones 1.  相似文献   

18.
The first examples of p-bromodienone calixarene derivatives (6-7 and 9-10) have been obtained by treatment of 1,5-dihydroxy-hexaalkoxycalix[8]arenes 5 or tripropoxycalix[4]arene 8 with trimethylphenylammonium tribromide and a saturated solution of NaHCO3. The first transannular spirodienone derivative 11 was only obtained in the presence of NaOH or using the KOH/I2/PEG-200 oxidizing system.  相似文献   

19.
Masaaki Omote 《Tetrahedron》2006,62(8):1886-1894
Axially dissymmetric ligands with perfluoroalkyl groups, (Ra)-2,2′-bis[(R)-1-hydroxy-1H-perfluorooctyl]biphenyl [(Ra)-(R)2-1c] and its enantiomer, have been synthesized successfully by the coupling reaction of the corresponding aryl bromide using Ni(COD)2. These ligands showed much higher asymmetric induction in the reaction of various aldehydes with diethylzinc than the trifluoromethyl (1a) or pentafluoroethyl (1b) analogues. Furthermore, 1c was recovered quantitatively by extraction with a fluorous solvent from the reaction mixture due to its high fluorine content. The recovered ligand 1c was pure enough to be reused without purification. The efficiency of 1c as the chiral ligand was not decreased at all even after seven times recycling.  相似文献   

20.
The synthesis of a fluorous diol 4 bearing a perfluorodecyl chain was described. A series of boronic acid were attached to 4 by esterification. The purification of the products was fulfilled by facile filtration instead of expensive and environmental troublesome fluorous liquid-liquid extraction. The Suzuki cross-coupling reactions of the formed fluorous boronates 5 underwent smoothly and the fluorous diol 4 was recycled in good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号