首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactivity of five di-n-butyltin(IV) complexes, n-Bu2Sn(OR)2 (1), n-Bu2SnO (3), [n-Bu2Sn(OR)]2O (4), (n-Bu2SnO)2(CO2) (6) and (n-Bu2SnO)6[(n-Bu2SnOR)2(CO3)]2 (7) (R = CH3), with CO2, suggested as possible catalyst precursors and key-intermediates for the direct synthesis of dimethyl carbonate from carbon dioxide and methanol, has been investigated using high-pressure 119Sn{1H} NMR (HP-NMR) spectroscopy. Four of the five precursors studied, i.e. 3, 4, 6 and 7 give rise to an identical 119Sn{1H} NMR pattern which can be explicitly attributed to the fingerprint of the dimeric form of the 1-methoxy-3-methylcarbonatotetrabutyldistannoxane {5}2. However, with 1, a new pair of signals is observed in addition to the characteristic 119Sn{1H} NMR resonances of the dimeric hemicarbonato species {2}2 and {5}2, which can be attributed to the in situ formation of an unprecedented species suggested to be the trinuclear carbonato di-n-butyltin(IV) complex, 8.  相似文献   

2.
Three new organotin(IV) carboxylates, {[n-Bu2Sn(O2CC4H4NOS2)]2O}2 (1), n-Bu2Sn(O2CC4H4NOS2)2 (2) and [PhSn(O)O2CC4H4NOS2]6 · 3H2O (3) were synthesized by the reaction of di-n-butyltin/diphenyltin oxide and rhodanine-N-acetic acid. The complexes 1-3 are characterized by elemental, IR, 1H, 13C and 119Sn NMR and X-ray crystallography diffraction analyses. The complex 1 has a tetranuclear structure based on a planar four-membered Sn2O2 ring, while complex 2 is a hexa-coordinated monomer. As for complex 3, it adopts the hexameric drum-shaped structure. The supramolecular structure of 1 has been found to consist of one-dimensional molecular chain built up by intermolecular non-bonded S?O interactions. The salient feature of the supramolecular structure of complex 2 is that of a one-dimensional polymer, in which intermolecular Sn?O, S?O and S?S interactions are recognized.  相似文献   

3.
Nine organotin esters, Me2SnL21, Me3SnL 2, n-Bu2SnL23, n-Bu3SnL 4, Ph3SnL 5, (PhCH2)2SnL26, [(Me2SnL)2O]27, Et2SnL28 and n-Oct2SnL29, of (E)-3-(3-fluorophenyl)-2-(4-chlorophenyl)-2-propenoic acid, HL have been synthesized and characterized by elemental analysis, IR, Multinuclear NMR (1H, 13C and 119Sn) and mass spectrometry. The geometry around the tin atom has been deduced and compared both in solution and solid states. The crystal structure of compound 5 has been determined by X-ray single crystal analysis, which shows a tetrahedral geometry around the tin atom with space group . These compounds have also been screened for bactericidal, fungicidal activities and cytotoxicity data.  相似文献   

4.
The oxoprotoberberine alkaloids 1a-d have been synthesized efficiently from the enamide derivatives 2a-d by a radical-initiated cyclization reaction utilizing n-Bu3SnH/AIBN and CuCl. The enamide derivatives 2a-d were prepared from phenylethylamine analogues 5a-b, followed by acylation with acetic anhydride, Bischler-Napieralski cyclization with POCl3 and benzoylation with the corresponding bromobenzoyl chloride, respectively.  相似文献   

5.
Compound MoO2Cl2(THF)2 reacts with two equivalents of 1,3-dialkyl substituted 4,5-dimethylimidazol-2-ylidenes to give the dioxomolybdenum(VI) complexes MoO2Cl2(LR)2 [R = Me (1), i-Pr (2)]. Treatment of MoO2Cl2(THF)2 with one equivalent of the N-heterocyclic carbenes LMe, Li-Pr and C1Ln-Bu (LMe = 1,3,4,5-tetramethylimidazol-2-ylidene, Li-Pr = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene, and C1Ln-Bu = 1,3-dibutyl-4,5-dichloroimidazol-2-ylidene) affords the monocarbene adducts MoO2Cl2(LR) [R = Me (3), i-Pr (4)] and MoO2Cl2(C1Ln-Bu) (5), respectively. Decomposition of complexes 1-5 affords a molybdenum oxychloride anion [Mo2O5Cl4]2− as an imidazolium salt.  相似文献   

6.
The reaction of the electronically unsaturated platina-β-diketone [Pt2{(COMe)2H}2(μ-Cl)2] (1a) with N?N donors led to the formation of diacetyl(hydrido)platinum(IV) complexes [Pt(COMe)2Cl(H)(N?N)] (2). By the reaction of these complexes with NaOH in a two-phase system (H2O/CH2Cl2) diacetylplatinum(II) complexes [Pt(COMe)2(N?N)] (N?N = bpy, 4a; 4,4′-Me2-bpy, 4b; 4,4′-t-Bu2-bpy, 4c; 4,4′-Ph2-bpy, 4d; 4,4′-t-Bu2-6-n-Bu-bpy, 4e; bpym, 4f; bpyr, 4g; phen, 4h; 4-Me-phen, 4i; 5-Me-phen, 4j) were obtained. All complexes were characterized by microanalysis, IR and 1H and 13C NMR spectroscopy. Additionally, complexes 4a, 4c, 4d and 4e were characterized by single-crystal X-ray diffraction analysis. The observed variety of packing patterns resulting from π-π stacking and hydrogen bonding is discussed.  相似文献   

7.
The reactions of bis(pyrazol-1-yl) acetic acid LCOOH (1) (L = (Pz)2CH-) and bis(3,5-dimethylpyrazol-1-yl)acetic acid L′COOH (2) (L = (3,5-Me2Pz)2CH-) with organotin oxide (hydroxide) precursors, n-BuSn(O)(OH), n-Bu2SnO, (n-Bu3Sn)2O and (Ph3Sn)2O has led to the isolation of several organotin compounds containing bispyrazolyl unit(s) on the periphery of the stannoxane structure [n-BuSn(O)O2CL]6 (3), [n-BuSn(O)O2CL′]6 (4), [n-Bu3SnO2CL]n (5), [n-Bu3SnO2CL′]n (6), [Ph3SnO2CL]n (7), [Ph3SnO2CL′]n (8), [{n-Bu2SnO2CL}2O]2 (9) and [{n-Bu2SnO2CL′}2O]2 (10). Compounds 5, 7, 9 and 10 have been structurally characterized by X-ray crystallography. In the solid state, these compounds possess interesting 3-D and 2-D supramolecular networks as a result of intermolecular C-H?O, C-H?N, C-H?Cl and C-H?π interactions.  相似文献   

8.
Three monomeric germatranes, 1-isopropoxy-3,3,7,7,10,10-hexamethyl-2,8,9-trioxa-5-aza-1-germatricyclo[3.3.3.01,5]undecane (1), 1-isopropoxy-3,3,7,7-tetramethyl-2,8,9-trioxa-5-aza-1-germatricyclo[3.3.3.01,5]undecane (2), and 1-isopropoxy-3,3-dimethyl-2,8,9-trioxa-5-aza-1-germatricyclo[3.3.3.01,5]undecane (3) have been synthesized by the reaction of Ge(O-i-Pr)4 in refluxing toluene with corresponding triethanolamines, (HOCH2CH2)nN(CH2CMe2OH)3−n (n = 0, L1H3; n = 1, L2H3; n = 2, L3H3), where the number of CMe2 groups adjacent to a OH functionality varied from 3 (L1H3) to 2 (L2H3), and to 1 (L3H3). These germatranes 1-3 have been characterized by solution 1H and 13C{1H} NMR and the solid state structure of 2 has been determined by single crystal X-ray diffraction.  相似文献   

9.
Eight new organostannoxane-based multiredox assemblies containing-Schiff-base-triazole ligand peripheries have been readily synthesized by hydrolysis or solvothermal synthetic routes. The reactions of the diorganotin dichloride with the Schiff-base-containing-triazole ligand afford the following types: [(Me2Sn)2O2(Ln)]2 (n = 1, for 1) [(Me2Sn)2O(RO)(Ln)]2 (R = Et, n = 2, for 2; R = Me, n = 3, for 3), [(n-Bu2Sn)2O2(Ln)]2 (n = 1, for 4; n = 2, for 5; n = 3, for 6) and [(Me2Sn)2Ln2O]2 · L (n = 2; L = H2O for 7, L = CH3OH for 8). All the complexes were characterized by elemental analysis, IR, 1H, 13C and 119Sn spectra analyses. Except for complexes 4 and 6, the other complexes are also characterized by X-ray crystallography diffraction analyses. Complexes 1-3 and 5 show similar structures containing a Sn4O4 ladder-shaped skeleton in which the N atom from a corresponding thione-form deprotonated Schiff base coordinated to the exo tin atoms in monodentate chelating agent. Complex 7 and 8 show a novel framework containing a Sn2O2 symmetrical core with two N atoms from triazole moiety coordinated to tin atoms. Weak but significant intermolecular hydrogen bondings, C-H?π stacking or non-bonded S?S interaction lead to aggregation and self-assembly of these complexes into 1D, 2D or 3D supramolecular frameworks.  相似文献   

10.
A novel system for the hydrodefluorination (HDF) of non-activated C-F bonds at room-temperature is described. The reaction of i-Bu2AlH with [Ph3C][B(C6F5)4] (1), [Ph3C][Al(C6F5)4] (2) and [Ph3C][Al{OC(CF3)3}4] (3) as precatalysts leads under formation of triphenylmethane to the aluminium cation [i-Bu2Al]+ and the non-coordinating anions [M(C6F5)4] (M = B, Al) and [Al{OC(CF3)3}4]. The formed aluminium cation is very reactive towards C-F bonds and easily forms i-Bu2AlF releasing a carbocation that abstracts the hydride of excess i-Bu2AlH and yields the corresponding hydrocarbon. Thereby, the active species [i-Bu2Al]+ is regenerated and can realize a catalytic cycle. For 1-fluorohexane as an example including non-activated C-F bonds different activities were found (TON: 1: 20; 2: 12; 3: 30) in cyclohexane as solvent.  相似文献   

11.
The reaction between one equivalent of [(acac)Ni(A)Ni(acac)] (A: N1,N2-bis(2-pyridylmethyl)-N3,N4-bis-(2,4,6-trimethylphenyl)oxalamidinate) and two equivalents of R-Li (R=n-butyl; n-hexyl) results in the formation of the binuclear complexes [(R-Ni)(A)(Ni-R)] (1: R=n-butyl: 2=n-hexyl). Both compounds were characterized by 1H- and 13C-NMR spectroscopy, elemental analysis, and mass spectroscopy. X-ray single diffraction studies of single crystals of 1 and 2 show that symmetrical binuclear complexes are formed in which the two Ni(II) centers are connected by the oxalamidinato bridging ligand A in a planar-square environment. No agostic interactions between the β-hydrogens of the n-alkyl groups and the metal centers were observed. DTA- and DTG-investigations show, that 1 and 2 are surprisingly thermally stable (decomposition temperature of 1: 188 °C under formation of butenes). Heating up a 1:1 mixture of 1 and 2 in toluene results in the formation of octane, decane and dodecane indicating an intermolecular transfer reaction of the n-alkyl-groups in solution. CV measurements display that the oxam complexes [(R-M)(A)(M-R)] (M=Ni, R=CH3 (3), Ph (4), CCH (6), CCPh (7); M=Pd, R=CH3 (5) are reversibly reduced in two steps indicating electronic interactions between the two metal centers.  相似文献   

12.
The reaction of primary amines RNH2 (R: Me, Et, iPr, tBu and Ph) with 1,2-dibromoethane gave N,N′-disubstituted ethylenediamines R-NH-CH2CH2-NH-R (1) in yields ranging from 10% (1a; R=Me) to 70% (1d, R=tBu; 1e, R=Ph). Piperazines and N-substituted polyethyleneimines were identified (1H NMR, 13C NMR and EI-MS) as side products of the reaction and isolated by fractional distillation. The piperazines 2 are formed in yields of 3-10% and can be separated from the diamines 1 in all cases, except for R=Me and Ph. The polyamine homologues RNH-[CH2CH2NR]n-H (3-5) were isolated in yields ranging from 0.1% (n=4, R=iPr) to 14% (n=2, R=iPr). The yields of 1 increase with the size of the substituent R, no obvious trend exists for the yields of the side products.  相似文献   

13.
Bis(dichlorosilyl)methanes 1 undergo the two kind reactions of a double hydrosilylation and a dehydrogenative double silylation with alkynes 2 such as acetylene and activated phenyl-substituted acetylenes in the presence of Speier’s catalyst to give 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes 4 as cyclic products, respectively, depending upon the molecular structures of both bis(dichlorosilyl)methanes (1) and alkynes (2). Simple bis(dichlorosilyl)methane (1a) reacted with alkynes [R1-CC-R2: R1 = H, R2 = H (2a), Ph (2b); R1 = R2 = Ph (2c)] at 80 °C to afford 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 as the double hydrosilylation products in fair to good yields (33-84%). Among these reactions, the reaction with 2c gave a trans-4,5-diphenyl-1,1,3,3-tetrachloro-1,3-disilacyclopentane 3ac in the highest yield (84%). When a variety of bis(dichlorosilyl)(silyl)methanes [(MenCl3 − nSi)CH(SiHCl2)2: n = 0 (1b), 1 (1c), 2 (1d), 3 (1e)] were applied in the reaction with alkyne (2c) under the same reaction conditions. The double hydrosilylation products, 2-silyl-1,1,3,3-tetrachloro-1,3-disilacyclopentanes (3), were obtained in fair to excellent yields (38-98%). The yields of compound 3 deceased as follows: n = 1 > 2 > 3 > 0. The reaction of alkynes (2a-c) with 1c under the same conditions gave one of two type products of 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes (4): simple alkyne 2a and terminal 2b gave the latter products 4ca and 4cb in 91% and 57% yields, respectively, while internal alkyne 2c afforded the former cyclic products 3cc with trans form between two phenyl groups at the 3- and 4-carbon atoms in 98% yield, respectively. Among platinum compounds such as Speier’s catalyst, PtCl2(PEt3)2, Pt(PPh3)2(C2H4), Pt(PPh3)4, Pt[ViMeSiO]4, and Pt/C, Speier’s catalyst was the best catalyst for such silylation reactions.  相似文献   

14.
Cadmium(II) complexes of 3-hydroxypicolinic acid, namely [CdI(3-OHpic)(3-OHpicH)(H2O)]2 (1), [Cd(3-OHpic)2(H2O)2] (2) and [Cd(3-OHpic)2]n (3) were prepared and characterized by spectroscopic methods (IR, NMR) and their molecular and crystal structures were determined by X-ray crystal structure analysis. Complexes 1 and 2 were prepared in similar reaction conditions using different cadmium(II) salts: cadmium(II) iodide and cadmium(II) acetate dihydrate, respectively, while 3 was prepared by recrystallization of 2 from N,N-dimethylformamide solution. Various coordination modes of 3-OHpicH in 13 were established in the solid state: bidentate N,O-chelated mode in 1 and 2, monodentate mode through the carboxylate O atom from zwitterionic ligand in 1 and bidentate N,O-chelated and bridging mode in 3. In the DMF solution of all prepared complexes, only monodentate mode of 3-OHpicH binding to cadmium(II) through the carboxylate O atom was established by 1H, 13C, 15N and 113Cd NMR spectroscopy.  相似文献   

15.
16.
Eleven borosiloxane [R′Si(ORBO)3SiR′] compounds where R′ = But and R = Ph (1), 4-PhC6H4 (2), 4-ButC6H4 (3), 3-NO2C6H4 (4), 4-CH(O)C6H4 (5), CpFeC5H4 (6), 4-C(O)CH3C6H4 (7), 4-ClC6H4 (8), 2,4-F2C6H3 (9), and R′ = cyclo-C6H11 and R = Ph (10), and 4-BrC6H4 (11) have been synthesized and characterized by spectroscopic (IR, NMR), mass spectrometric and, for compounds where R′ = But and R = 4-PhC6H4 (2), 4-ButC6H4 (3), 3-NO2C6H4 (4), CpFeC5H4 (6) and 2,4-F2C6H3 (9), X-ray diffraction studies. These compounds contain trigonal planar RBO2 and tetrahedral R′SiO3 units located around 11-atom “spherical” Si2O6B3 cores. The dimensions of the Si2O6B3 cores in compounds 2, 3, 4, 6 and 9 are remarkably similar. The reaction between [ButSi{O(PhB)O}3SiBut] (1), and excess pyridine yields the 1:1 adduct [ButSi{O(PhB)O}SiBut]. NC5H5 (12) while the reaction between 1 and N,N,N′,N′-tetramethylethylenediamine in equimolar amounts affords a 2:1 borosiloxane:amine adduct [ButSi{O(PhB)O}3SiBut]2 · Me2NCH2CH2NMe2 (13). Compounds 12 and 13 were characterised with IR and (1H, 13C and11B) NMR spectroscopies and the structure of the pyridine complex 12 was determined with X-ray techniques.  相似文献   

17.
Microwave assisted solid-state reaction between equimolar quantities of sterically encumbered 3,5-di-tert-butylsalicylic acid (H2-DTBSA) and n-butylstannoic acid results in the formation of hexameric drum shaped stannoxane [nBuSn(O)(H-DTBSA)]6 (1). Synthesis of 1 could not be achieved under normal thermal conditions or mechanical grinding. However, the azeotropic removal of water produced in the reaction of nBu2SnO with 3,5-di-tert-butyl salicylic acid in benzene yielded the tetrameric ladder shaped stannoxane [{nBu2Sn(H-DTBSA)}2O]2 (2), which could also be synthesized in better yields by microwave irradiation as in the case of 1. Compounds 1 and 2 have been characterized by elemental analysis, IR, MALDI-MS and NMR (1H and 13C) spectroscopy. The structures of compound 1 and 2 are determined by single crystal X-ray diffraction techniques. Compound 1 is hexameric with a Sn6O6 drum core while compound 2 forms a ladder structure with three Sn2O2 rings, both decorated with -OH functionalities on the exterior of the polyhedral structure. While the formation of 1 from n-butylstannoic acid is straightforward, the formation of 2 from nBu2SnO (and not a cyclic structure similar to 3, where the phenolic oxygen also coordinates to tin) can be understood in terms of the increased steric hindrance in DTBSA for the phenolic protons to react with tin.  相似文献   

18.
Three monomeric boratranes B[(OCH2CH2)nN(CH2CMe2O)3−n] (n = 0, 1; n = 1, 2; n = 2, 3) have been synthesized by the reaction of B(OMe)3 with a series of triethanolateamines such as [(OCH2CH2)nN(CH2CMe2O)3−n]3− (n = 0, L1; n = 1, L2; n = 2, L3), where the number of CMe2 groups adjacent to the OH functionality varied from 3 (L1H3) to 2 (L2H3) to 1 (L3H3). These boratranes 1-3 have been characterized by solution 1H, 13C{1H} and 11B NMR, and the crystal structures of 1 and 2 have been determined by single crystal X-ray diffraction.  相似文献   

19.
The preparation of iodo acid [closo-1-CB9H8-1-COOH-10-I] (1) is optimized and scaled from 1 to 40 g of B10H14. The improved preparation of the [arachno-6-CB9H13-6-COOH] (5) uses four times smaller volume and can be run conveniently in up to 40 g scale in a 3-L vessel. The optimized oxidation of 5 to [closo-2-CB9H9-2-COOH] (4) requires less oxidant, 12 times smaller volume, and significantly shorter reaction time. The overall yields of the iodo acid 1 as the [NMe4]+ salt are typically 8-10% (10-12 g) for 40 g of B10H14. The iodo acid 1 was transformed to amino acid 8, then to dinitrogen acid 10, and finally to sulfonium acid 2[3] in overall yield of about 13%. The search for a more efficient phosphine ligand for the Pd-catalyzed amination process was not fruitful. Three routes to the sulfonium acid 2[n] were investigated, and the best yield of about 47% was obtained for Cs2CO3-assisted cycloalkylation. Liquid crystalline ester of acid 2[3] and 4-butoxyphenol was prepared and investigated.  相似文献   

20.
α-Alkynyl-α-ethoxycarbonyl cyclopentanones 1a-c and cyclohexanones 2a-c were readily synthesized by the reaction of ethyl 2-oxocyclopentanonecarboxylate 6 and ethyl 2-oxocyclohexanonecarboxylate 7 with alkynyllead triacetates 5a-c obtained from lithium acetylides 4a-c and lead tetraacetate. Treatment of 1a-c and 2a-c with 1 N KOH in THF or with n-Bu4N+OEt in EtOH and THF gave the corresponding conjugated allenyl esters 8a-c, 9a-c, 10a-c, and 11a-c in good to excellent yields, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号