首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 4-(3-n-butylureidophenyl)imidazole nucleoside was successfully incorporated into a triplex-forming oligonucleotide (TFO). Binding affinity and base pair selectivity of the TFO containing this non-natural nucleoside were studied with various duplex targets containing all four possible Watson-Crick base pairs opposite the nucleoside analog in the third strand. Triplex thermal stabilities indicate that the synthetic nucleoside acts as a universal base in binding to all four possible Watson-Crick base pairs with moderate affinity but poor selectivity. Based on an analysis of its binding thermodynamics, this can be rationalized by the absence of strong specific interactions and more favorable entropic contributions upon triplex formation.  相似文献   

2.
3.
Four nonnatural imidazole nucleosides with different substituents were synthesized and studied for their binding to a CG Watson-Crick base pair by NMR spectroscopic techniques in an aprotic solvent. Concentration and temperature dependent measurements allowed the determination of association constants, association enthalpies and entropies. Strong binding was observed with analogues carrying an ureidophenyl substituent and corresponding enthalpies of association are compatible with the anticipated formation of three hydrogen bonds to the CG base pair. In contrast, only weak binding was observed for analogues with an aminophenyl or benzamidophenyl substituent. 2D NOE measurements at low temperatures confirm the proposed binding mode for the high-affinity ligands but indicate binding interactions for the weakly bound analogues different from the expected geometry.  相似文献   

4.
Novel imidazole nucleosides with substituents of different flexibility were studied for their binding to a CG Watson-Crick base pair by (1)H NMR spectroscopy in an aprotic solvent. Thermodynamic data as determined by titration experiments at different temperatures reveal the influence of the substituent on the enthalpy and entropy of complex formation and thus on the strength of binding.  相似文献   

5.
In this paper, we report the analysis of seven benzopyridoindole and benzopyridoquinoxaline drugs binding to different duplex DNA and triple helical DNA, using an approach combining electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (MS/MS), and molecular modeling. The ligands were ranked according to the collision energy (CE(50)) necessary to dissociate 50% of the complex with the duplex or the triplex in tandem MS. To determine the probable ligand binding site and binding mode, molecular modeling was used to calculate relative ligand binding energies in different binding sites and binding modes. For duplex DNA binding, the ligand-DNA interaction energies are roughly correlated with the experimental CE(50), with the two benzopyridoindole ligands more tightly bound than the benzopyridoquinoxaline ligands. There is, however, no marked AT versus GC base preference in binding, as supported both by the ESI-MS and the calculated ligand binding energies. Product ion spectra of the complexes with triplex DNA show only loss of neutral ligand for the benzopyridoquinoxalines, and loss of the third strand for the benzopyridoindoles, the ligand remaining on the duplex part. This indicates a higher binding energy of the benzopyridoindoles, and also shows that the ligands interact with the triplex via the duplex. The ranking of the ligand interaction energies compared with the CE(50) values obtained by MS/MS on the complexes with the triplex clearly indicates that the ligands intercalate via the minor groove of the Watson-Crick duplex. Regarding triplex versus duplex selectivity, our experiments have demonstrated that the most selective drugs for triplex share the same heteroaromatic core.  相似文献   

6.
Substituted 3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one nucleoside analogues have been synthesised from 5-alkynyl-uridine derivatives, incorporated into triplex forming oligonucleotides (TFOs) and found to selectively bind CG inversions with enhanced affinity compared to T.  相似文献   

7.
In order to expand target sequences in triplex DNA formation, the development of a nucleobase that recognizes a CG base pair in dsDNA was attempted. A 4-[(3R,4R)-dihydroxypyrrolidino]pyrimidin-2-one nucleobase was found to recognize a CG base pair with high sequence-selectivity.  相似文献   

8.
The synthesis of a new ribonucleoside analogue, which combines two modifications, namely a 2′-aminoethoxy side-chain on the ribose and a 5-methyl-1H-pyrimidin-2-one (4HT) unit as a base replacement, is presented. This building block was incorporated into triplex forming oligonucleotides and the binding properties to CG inversion sites in DNA duplex targets were studied. The data clearly show that the 4HT base selectively recognizes the CG base-pair, while the aminoethoxy chain adds to the overall stability of the triple helix.  相似文献   

9.
We have recently reported the first artificial nucleoside for alternative DNA base pairing through metal complexation (J. Org. Chem. 1999, 64, 5002-5003). In this context, we have accomplished a Ag(I)-mediated base pair or a base triplet in a double- or triple-stranded DNA, respectively, by introducing a pair of pyridine nucleobases in the middle of the sequence. As a result, the incorporated Ag(I) complex significantly stabilized the DNA duplex and triplex. This strategy would be expanded to the regulation of thermodynamic stability of DNA duplex or triplex by adding transition metal ions from outside, or to labeling applications in biotechnology.  相似文献   

10.
We describe the synthesis and the incorporation into oligonucleotides of the novel nucleoside building blocks 9, 10 , and 16 , carrying purine‐like double H‐bond‐acceptor bases. These base‐modified nucleosides were conceived to recognize selectively a cytosine⋅guanine (C⋅G) inversion site within a homopurine⋅homopyrimidine DNA duplex, when constituent of a DNA third strand designed to bind in the parallel binding motif. While building block 16 turned out to be incompatible with standard oligonucleotide‐synthesis conditions, UV/triplex melting experiments with third‐strand 15‐mers containing β‐D ‐nucleoside 6 (from 9 ) showed that recognition of the four natural Watson‐Crick base pairs follows the order G⋅C≈C⋅G>A⋅T>T⋅A. The recognition is sequence‐context sensitive, and G⋅C or C⋅G recognition does not involve protonated species of β‐D ‐nucleoside 6 . The data obtained fit (but do not prove) a structural model for C⋅G recognition via one conventional and one C−H⋅⋅⋅O H‐bond. The unexpected G⋅C recognition is best explained by third‐strand base intercalation. A comparison of the triplex binding properties of these new bases with those of 4‐deoxothymine (5‐methylpyrimidine‐2(1H)‐one, 4 HT), previously shown to be C⋅G selective but energetically weak, is also described.  相似文献   

11.
A new type of double-stranded DNA targeting format by formation of a Janus-Wedge (J-W) triple helix is described. The "wedge" residue W1 is used for A-T and T-A base pairs while W2 is used for G-C and C-G base pairs. Both wedge residues are attached to a PNA backbone that is designed to insert the probe strand into double-stranded DNA and base pair with both Watson-Crick faces. To study the stability of such an assembly, we have examined the formation of the J-W triplex with various sequences.  相似文献   

12.
Triplex-forming oligonucleotides (TFOs) are potential DNA-targeting molecules and would become powerful tools for genomic research. As the stabilization of the TFO is partially provided by hydrogen bonds to purine bases, the most stable triplexes form with homopurine/homopyrimidine sequences, and a pyrimidine base in the purine strand of the duplex interrupts triplex formation. If a TFO can recognize sequences including such an interrupting site, the target regions in the genome would be expanded to a greater extent. However, this problem has not been generally solved despite extensive studies. We have previously reported a new base analogue (WNA) constructed of three parts, a benzene ring, a heterocyclic ring, and a bicyclic skeleton to hold these two parts. In this study, we have further investigated modification of WNA systematically and determined two useful WNA analogues, WNA-beta T and WNA-beta C, for selective stabilization of triplexes at a TA and a CG interrupting site, respectively. The triplexes with WNA analogues have exhibited an interesting property in that they are more stable than natural-type triplexes even at low Mg(2+) concentration. From comparison of the results with H-WNA-beta T lacking benzene and those with WNA-H without thymine, it has been suggested that benzene is a major contributor for triplex stability and thymine provides selectivity. Thus, it has been successfully demonstrated that WNA-beta T/TA and WNA-beta C/CG combinations may expand triplex recognition codes in addition to the natural A/AT and G/GC base triplet codes. The results of this study will provide useful information for the design of new WNA analogues to overcome inherent problems for further expansion of triplex recognition codes.  相似文献   

13.
Binding of an acetic acid (HAc) ligand to adenosine (A) was studied by (1)H NMR spectroscopic techniques. Using a low-melting deuterated Freon mixture as solvent, liquid-state measurements could be performed in the slow exchange regime and allowed a detailed characterization of the formed associates. Thus, at 128 K, trimolecular complexes A.HAc(2) and A(2).HAc with both Watson-Crick and Hoogsteen sites of the central adenine base occupied coexist in various amounts depending on the adenosine:acetic acid molar ratio. Whereas the carboxylic acid OH proton is located closer to the acid for all hydrogen bonds formed, a more deshielded proton at the Watson-Crick site is evidence for a stronger hydrogen bond as compared to the Hoogsteen interaction. For the binding of acetic acid to an adenosine-thymidine base pair in either a Watson-Crick or a Hoogsteen configuration, hydrogen bonds to the available adenine binding site are strengthened as compared to the corresponding hydrogen bonds in the A.HAc(2) complex.  相似文献   

14.
Novel Janus-type nucleoside analogues (1a-d) were synthesized. Their pyrimido[4,5-d]pyrimidine base moiety has one face with a bidentate Watson-Crick donor-acceptor (DA) H-bond array of adenine and the other face with an acceptor-donor (AD) H-bond array of thymine. These nucleosides may self-associate through the self-complementary base pair. Indeed, in the solid state, compound 6d displayed a honeycomb-like supramolecular structure with tetrameric membered cavities formed through the combination of reverse Watson-Crick base pairs and aromatic stacking, in which the solvent molecules were accommodated. The result of temperature-dependent CD studies showed that the free nucleosides can form higher order chiral structures in aqueous solution.  相似文献   

15.
Gaps in the central strand of oligonucleotide triplexes bind nucleoside phosphates tightly. Watson-Crick and Hoogsteen base pairing as design principle yield motifs with high affinity for nucleoside phosphates with A or G as nucleobase, including ATP. The second messenger 3',5'-cAMP is bound with nanomolar affinity. A designed DNA motif accommodates seven nucleotides at a time. The design was implemented for both DNA and RNA.  相似文献   

16.
A new type of DNA targeting with the formation of a Janus-Wedge (J-W) triple helix is described. The "wedge" residue (W) attached to a PNA backbone is designed to insert itself into double-stranded DNA and base pair with both Watson-Crick faces. To study the stability of such an assembly, we have examined the formation of the J-W triplex with dC8 - T8 target sequence. The use of this target sequence permits the study of this new helix form without competing Watson-Crick interactions between the two target residues. Studies indicate that the W strand binds to both target strands, with defined polarity and a stability (-15.2 kcal/mol) that is roughly the sum of the two independent duplex interactions.  相似文献   

17.
Triplex-forming oligonucleotides (TFOs) are sequence-specific DNA-binding agents, but their target duplexes are limited to homopurine/homopyrimidine sequences because of interruption of the pyrimidines bases in the purine region. This problem has not been fully solved despite a wide variety of studies. Recently, we have developed a bicyclic system as a novel scaffold for nucleoside analogues (WNA, W-shaped nucleoside analogues) and determined two useful compounds, WNA-betaT (2) and WNA-betaC (5), for highly stable and selective triplex formation at a TA and a CG interrupting site, respectively. However, subsequent investigations have shown that the triplex formation using WNA is dependent on the neighboring bases of the TFOs. In this study, we have synthesized new WNA derivatives having halogenated recognition bases or benzene rings and evaluated the effects of the modifications on the triplex stability as well as selectivity. It has been found that the WNA-betaT analogues holding 5-halogenated pyrimidine bases (WNA-beta(Br)U (3) and WNA-beta(F)U (4)) exhibit high CG-selectivity. On the other hand, the WNA-betaT derivatives having the bromo-substituted benzene ring (mBr-WNA-betaT (10) and oBr-WNA-betaT (11)) have shown high selectivity to a TA interrupting site with high stability in the sequences to which the original WNA-betaT do not bind. Thus, sequence-dependency has been overcome by the sequence-dependent use of WNA-betaT, mBr-WNA-betaT, and oBr-WNA-betaT.  相似文献   

18.
Molecular dynamics and thermodynamic integration calculations have been carried out on a set of G-rich single-strand, duplex, triplex, and quadruplex DNAs to study the structural and stability changes connected with the guanine --> 6-thioguanine (G --> S) mutation. The presence of 6-thioguanine leads to a shift of the geometry from the B/A intermediate to the pure B-form in duplex DNA. The G --> S mutation does not largely affect the structure of the antiparallel triplex when it is located at the reverse-Hoogsteen position, but leads to a non-negligible local distortion in the structure when it is located at the Watson-Crick position. The G --> S mutation leads to destabilization of all studied structures: the lowest effect has been observed for the G --> S mutation in the reverse-Hoogsteen strand of the triplex, a medium effect has been observed in the Watson-Crick strand of the triplex and duplex, and the highest influence of the G -->S mutation has been found for the quadruplex structures.  相似文献   

19.
We have previously reported DNA triplexes containing the unnatural base triad G-PPI·C3, in which PPI is an indole-fused cytosine derivative incorporated into DNA duplexes and C3 is an abasic site in triplex-forming oligonucleotides (TFOs) introduced by a propylene linker. In this study, we developed a new unnatural base triad A-ψ·C(R1) where ψ and C(R1) are base moieties 2'-deoxypseudouridine and 5-substituted deoxycytidine, respectively. We examined several electron-withdrawing substituents for R1 and found that 5-bromocytosine (C(Br)) could selectively recognize ψ. In addition, we developed a new PPI derivative, PPI(Me), having a methyl group on the indole ring in order to achieve selective triplex formation between DNA duplexes incorporating various Watson-Crick base pairs, such as T-A, C-G, A-ψ, and G-PPI(Me), and TFOs containing T, C, C(Br), and C3. We studied the selective triplex formation between these duplexes and TFOs using UV-melting and gel mobility shift assays.  相似文献   

20.
The synthesis and evaluation of a series of novel nucleobases based on substituted 1,8-naphthyridin-2(1H)-ones are reported. The nucleobases were designed to meet the requirements for incorporation into peptide nucleic acids (PNAs) and were evaluated as part of PNA duplex and triplex nucleic acid recognition systems. Of the various nucleobases tested, only the 7-chloro-1,8-naphthyridin-2(1H)-one (7-Cl-bT) nucleobase led to consistently increased affinity in all recognition systems, duplex (Watson-Crick) as well as triplex (Hoogsteen). For multiply modified systems, the increase in thermal stability per modification was dependent on the sequence context, ranging from 2.0 degrees C (in separate positions) to 3.5 degrees C (in adjacent positions) in PNA-DNA duplexes and from 1.2 degrees C (in separate positions) to 3.2 degrees C (in adjacent positions) in PNA-RNA duplexes. Singly mismatched oligonucleotide targets were employed to demonstrate uncompromised sequence discrimination. When part of multiply modified triplex (Hoogsteen) recognition systems, the 7-Cl-bT unit gave rise to increases in the thermal stability ranging from 2.7 to 3.5 degrees C when incorporated into separated and adjacent positions, respectively. Our results furthermore indicate that the duplex stabilization is predominantly enthalpic and therefore most likely not a consequence of single-strand preorganization. Finally, and most surprisingly, we find no direct correlation between the end-stacking efficiency of this type of nucleobase and its helix stabilization when involved in Watson-Crick base pairing within a helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号