首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Size/shape-controlled colloidal CdSe quantum disks with zinc-blende (cubic) crystal structure were synthesized using air-stable and generic starting materials. The colloidal CdSe quantum disks were approximately square, and their lateral dimensions were varied between 20 and 100 nm with the thickness controlled between 1 and 3 nm, which resulted in sharp and blue-shifted UV-vis and PL peaks due to one-dimensional quantum confinement. The quantum disks were grown with either <001> or <111> direction, polar directions in the single crystalline disks, as the short axis, and both basal planes were terminated with Cd ions. These surface Cd ions were passivated with negatively charged fatty acid ligands to neutralize the net positive charges caused by the excess monolayer of Cd ions. The coordination of the Cd ions and carboxylate groups further enabled the close-packing monolayer of fatty acid ligands on each basal plane. The close packing of the hydrocarbon chains of fatty acids dictated the up temperature limit for synthesis of the colloidal quantum disks, and the low temperature limit was found to be related to the reactivity of the starting materials. Overall, a high Cd to Se precursor ratio, negative-charged fatty acid ligands with a long hydrocarbon chain, and a proper temperature range (approximately between 140 and 250 °C) were found to be needed for successful synthesis of the colloidal CdSe quantum disks.  相似文献   

2.
Highly luminescent colloidal nanocrystals have wide applications in bioimaging and various optoelectronic devices.Herein we report a facile and mild procedure by combining S2-treatment and binary ligand passivation,which can efficiently enhance the luminescent property of CdSe nanocrystals at room temperature.The photoluminescence quantum yield of as-treated CdSe nanocrystals exhibits drastic enhancement(e.g.,188 times for CdSe nanorods)after this dual-passivation treatment.The methodology proposed here can be applied to various CdSe nanocrystals,regardless of their sizes,shapes,and crystal structures.  相似文献   

3.
In this work we present the preparation of highly luminescent anisotropic CdTe/CdSe colloidal heteronanocrystals. The reaction conditions used (low temperature, slow precursor addition, and surfactant composition) resulted in a tunable shape from prolate to branched CdTe/CdSe nanocrystals. Upon CdSe shell growth the heteronanocrystals show a gradual evolution from type-I to type-II optical behavior. These heteronanocrystals show a remarkably high photoluminescence quantum yield (up to 82%) and negligible thermally induced quenching up to temperatures as high as 373 K.  相似文献   

4.
The 1,2,3,4-thiatriazole-5-thiolate anion (TTT(-)) was found to be a strongly binding ligand for CdSe nanocrystals, quantitatively exchanging various long-chain ligands to yield stable colloidal suspensions in common polar solvents. The TTT(-) ligand thermolyzes at <100 °C to produce thiocyanate in situ, resulting in reduced quantum confinement in nanocrystal films. CdSe(TTT) possesses far higher colloidal stability than CdSe(SCN), and that, together with the facile synthesis of TTT(-), implies that this is a useful ligand for nanocrystal applications as a masked thiocyanate.  相似文献   

5.
Here, we elucidate a double-lamellar-template pathway for the formation of CdSe quantum belts. The lamellar templates form initially by dissolution of the CdX(2) precursors in the n-octylamine solvent. Exposure of the precursor templates to selenourea at room temperature ultimately affords (CdSe)(13) nanoclusters entrained within the double-lamellar templates. Upon heating, the nanoclusters are transformed to CdSe quantum belts having widths, lengths, and thicknesses that are predetermined by the dimensions within the templates. This template synthesis is responsible for the excellent optical properties exhibited by the quantum belts. We propose that the templated-growth pathway is responsible for the formation of the various flat, colloidal nanocrystals recently discovered, including nanoribbons, nanoplatelets, nanosheets, and nanodisks.  相似文献   

6.
Co(2+)-doped CdSe colloidal nanowires with tunable size and dopant concentration have been prepared by a solution-liquid-solid (SLS) approach for the first time. These doped nanowires exhibit anomalous photoluminescence temperature dependence in comparison with undoped nanowires.  相似文献   

7.
In this study, a novel approach is demonstrated to fabricate hierarchically structured cadmium selenide (CdSe) layers with size-tunable nano/microporous morphologies achieved using polystyrene (PS) bilayered templates (top layer: colloidal template) via potentiostatic electrochemical deposition. The PS bilayer template is made in two steps. First, various PS patterns (stripes, ellipsoids, and circles) are prepared as the bottom layers through imprint lithography. In a second step, a top template is deposited that consists of a self-assembled layer of colloidal 2D packed PS particles. Electrochemical growth of CdSe crystals in the voids and selective removal of the PS bilayered templates give rise to hierarchically patterned 2D hexagonal porous CdSe structures. This simple and facile technique provides various unconventional porous CdSe films, arising from the effect of the PS bottom templates.  相似文献   

8.
We demonstrate the self-organization of CdSe nanorods into nematic, smectic, and crystalline solids. Layered colloidal crystals of CdSe nanorods grow by slow destabilization of a nanocrystal solution upon allowing the diffusion of a nonsolvent into the colloidal solution of nanocrystals. The colloidal crystals of nanorods show characteristic birefringence, which we assign to specific spherulite-like texture of each nanorod assembly. To demonstrate the general character of nanorod self-assembly technique, CdSe/CdS heterostructure nanorods were organized into highly luminescent superlattices.  相似文献   

9.
A study was carried out on the features of formation of stable aqueous colloidal solutions containing CdSe nanoparticles stabilized by sodium polyphosphate resulting from a reaction between cadmium chloride and sodium selenosulfate. The major parameters determining the size of the CdSe nanoparticles are the reaction medium temperature and the ratio of the starting reagent concentrations. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 42, No. 2, pp. 102–106, March–April, 2006.  相似文献   

10.
Colloidal CdSe nanoplatelets are considered to be excellent candidates for many applications in nanotechnology. One of the current challenges is to self‐assemble these colloidal quantum wells into large ordered structures to control their collective optical properties. We describe a simple and robust procedure to achieve controlled face‐to‐face self‐assembly of CdSe nanoplatelets into micron‐long polymer‐like threads made of up to ~1000 particles. These structures are formed by addition of oleic acid to a stable colloidal dispersion of platelets, followed by slow drying and re‐dispersion. We could control the average length of the CdSe nanoplatelet threads by varying the amount of added oleic acid. These 1‐dimensional structures are flexible and feature a “living polymer” character because threads of a given length can be further grown through the addition of supplementary nanoplatelets at their reactive ends.  相似文献   

11.
Tin domain growth on quasi-two-dimensional colloidal CdSe and CdTe nanoparticles having the zinc blende structure has been studied. The initial quasi-two-dimensional CdSe and CdTe nanoparticles having lateral sizes of 100–200 nm were prepared by a colloidal method. Tin domain growth was accomplished in tetrahydrofuran via the reduction of a tin(II) salt by tetrabutylammonium borohydride. The tin domains had sizes of 10–20 nm as probed by TEM. In case of CdSe nanoparticles, tin domains were grown inside the inner cavities of initially rolled nanoparticles. A β-tin phase was identified by X-ray diffraction. The absorption spectra featured the broadening of exciton bands corresponding to quasi-two-dimensional nanoparticles, the spectral positions of absorption peaks remaining almost unchanged.  相似文献   

12.
The effect of primary particle shape on the porosity, mechanical strength, and luminescence intensity of metal chalcogenide aerogels was probed by comparison of CdSe aerogels prepared from spherical and rod-shaped particles. Rod-shaped particles yield aerogels with polymeric morphologies in contrast to the colloidal morphology obtained from spherical particles. Relative to the colloidal analogues, the polymeric CdSe aerogels exhibit twice the surface area, a doubling of the complex viscosity for 5 wt % aerogel-PDMS composites, and a 25-fold increase in emission intensity. Altering the shape of the building block from which nanostructured networks are assembled is an effective way to tune the basic properties of metal chalcogenide semiconducting aerogels.  相似文献   

13.
We study the formation of colloidal CdSe nanoplatelets using both tansmission electron microscopy (TEM) and spectroscopic analysis. We show that the platelets form by continuous lateral extension of small (<2 nm) nanocrystal CdSe seeds. The nanoplatelet thickness is fixed by the seed dimension and remains constant during the platelet formation. The nanoplatelet lateral dimensions can be tuned using additional precursor injection. Absorption and fluorescence analysis of the CdSe nanoplatelets as they continuously extend laterally confirms a continuous transition from 3D to 1D confined nanoparticles. The formation of the CdSe platelets is found to be similar for different platelet thicknesses that we control with a precision of one CdSe monolayer.  相似文献   

14.
A modification of the high-temperature colloidal method has been proposed, which makes it possible to obtain CdSe nanoparticles in the form of tetrapods with a high crystallographic yield. The result has been achieved by controlling the state of CdSe crystalline phases at various stages of the growth of nanoparticles through the use of appropriate ligands. The specifics of the spectral-luminescent properties of the obtained CdSe nanotetrapods have been investigated.  相似文献   

15.
Size dependence of spin dynamics in colloidal CdSe quantum dots (QDs) are investigated with circularly polarized pump-probe transmission spectroscopy at room temperature. The excitation energy is tuned to resonance with the lowest exciton (1S(h)1S(e)) energy of the CdSe QDs. The exciton spin dynamics of CdSe QD with the diameter of 5.2 nm shows monoexponential decay with a typical time constant of about 1-3 ps depending on the excitation energy. For the cases of CdSe QDs with smaller size (with the diameter of 4.0 and 2.4 nm), the exciton spin relaxation shows biexponential decay, a fast component with time constant of several ps and a slow one with time constant of hundreds of ps to nanosecond time scale. The fast spin relaxation arises from the bright-dark transition, i.e., J = ±1 ? -/+2 transition. This process is dominated by the hole spin flips, while the electron spin conserves. The slow spin relaxation is attributed to the intralevel exciton transitions (J = ±1 ? -/+1 transition), which is relevant to the electron spin flip. Our results indicate that the exciton spin relaxation pathways in CdSe QD are controllable by monitoring the particle size, and polarized pump-probe spectroscopy is proved to be a sensitive method to probe the exciton transition among the fine structures.  相似文献   

16.
A supra-quantum dot (SQD) is a three-dimensionally assembled QD structure composed of several hundreds to thousands of QDs connected through oriented attachments. Owing to their three-dimensional interconnected structures and relatively large volumes, impurity atoms are thermodynamically more stable in SQDs than in conventional QDs. Herein, we report the facile in-situ synthesis of colloidal Ag-doped CdSe SQDs. Ag dopants were efficiently incorporated into CdSe SQDs through the three-dimensional interconnection of Ag-doped primary CdSe QDs, as confirmed by elemental analysis combined with chemical etching. Photoelectron spectroscopic studies revealed that the Ag-doped CdSe SQDs exhibit n-type doping behavior, since the valence electrons from the interstitial Ag atoms are directly donated to the lattice.  相似文献   

17.
Successive ion layer adsorption and reaction (SILAR) originally developed for the deposition of thin films on solid substrates from solution baths is introduced as a technique for the growth of high-quality core/shell nanocrystals of compound semiconductors. The growth of the shell was designed to grow one monolayer at a time by alternating injections of air-stable and inexpensive cationic and anionic precursors into the reaction mixture with core nanocrystals. The principles of SILAR were demonstrated by the CdSe/CdS core/shell model system using its shell-thickness-dependent optical spectra as the probes with CdO and elemental S as the precursors. For this reaction system, a relatively high temperature, about 220-240 degrees C, was found to be essential for SILAR to fully occur. The synthesis can be readily performed on a multigram scale. The size distribution of the core/shell nanocrystals was maintained even after five monolayers of CdS shell (equivalent to about 10 times volume increase for a 3.5 nm CdSe nanocrystal) were grown onto the core nanocrystals. The epitaxial growth of the core/shell structures was verified by optical spectroscopy, TEM, XRD, and XPS. The photoluminescence quantum yield (PL QY) of the as-prepared CdSe/CdS core/shell nanocrystals ranged from 20% to 40%, and the PL full-width at half-maximum (fwhm) was maintained between 23 and 26 nm, even for those nanocrystals for which the UV-vis and PL peaks red-shifted by about 50 nm from that of the core nanocrystals. Several types of brightening phenomena were observed, some of which can further boost the PL QY of the core/shell nanocrystals. The CdSe/CdS core/shell nanocrystals were found to be superior in comparison to the highly luminescent CdSe plain core nanocrystals. The SILAR technique reported here can also be used for the growth of complex colloidal semiconductor nanostructures, such as quantum shells and colloidal quantum wells.  相似文献   

18.
The interband and intraband spectra of colloidal II-VI CdS and CdSe quantum dot cores and CdSZnSe, CdSCdSe, CdSeCdS, and CdSeZnSe core/shell systems are reported. Infrared absorption peaks between 0.5 and 0.2 eV are observed. The slope of the intraband energy versus the first interband absorption feature is characteristic of the relative band alignments of the materials constituting the core and the shell and it is analyzed within an effective mass model. The analysis provides a new estimate of the band gap of zinc blende CdSe as well as the band offsets in zinc blende and wurtzite CdSe, CdS, and ZnSe.  相似文献   

19.
Evidence for an interaction between the quantum dot exciton fine structure states F = +/-1 is obtained by measuring the dynamics of transitions among those states, exciton spin relaxation or flipping. An ultrafast transient grating experiment based on a crossed-linear polarization grating is reported. By using the quantum dot selection rules for absorption of circularly polarized light, it is demonstrated that it is possible to detect transitions between nominally degenerate fine structure states, even in a rotationally isotropic system. The results for colloidal CdSe quantum dots reveal a strong size dependence for the exciton spin relaxation rate from one bright exciton state (F = +/-1) to the other in CdSe colloidal quantum dots at 293 K, on a time scale ranging from femtoseconds to picoseconds, depending on the quantum dot size. The results are consistent with an interaction between those states attributed to a long-range contribution to the electron-hole exchange interaction.  相似文献   

20.
Colloidal quantum dots of the CdSe family have been studied by X-ray absorption near edge structure (XANES) spectroscopy and computer modelling. CdK edge XANES spectra in colloidal quantum dots based on varisized CdSe nanoparticles have been recorded. Atomic structure of CdSe particles and also CdSe particles doped by transition metal atoms Mn and Co has been modelled based on the density functional theory. The embedding of the doping atoms is shown to result in considerable changes in the local atomic structure of CdSe particles. XANES spectra have been calculated above the CdK edge in CdSe particles, above the MnK edge in CdSe:Mn particles, above the CoK edge in CdSe:Co particles. The sensitivity of XANES spectroscopy to small changes in structural parameters of the nanoparticles of CdSe family has been demonstrated that furnishes an opportunity to apply it for the verification of atomic structure parameters around positions of cadmium and doping atoms of transition metals in quantum dots based on CdSe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号