首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study turbulent flow of a conducting liquid in a uniform external magnetic field. It is shown that intense helicity generation is possible in the presence of a mean shear flow. It is noted that even though the mean helicity of the initial flow can be zero, the presence of internal topological structure of the flow, for example the presence of helicity of different signs at different scales, is nevertheless necessary for helicity generation. Zh. éksp. Teor. Fiz. 114, 946–955 (September 1998)  相似文献   

2.
We present the first 3D numerical MHD simulations that show that Taylor's relaxation conjecture is not satisfied in some MHD evolution of magnetic configurations encountered in solar physics. We show that magnetic helicity can be slowly injected through the boundary into a magnetic configuration which then evolves into a MHD disruption, with the formation in finite time of a current sheet through which reconnection occurs, leading to a release of magnetic energy. While helicity is well conserved during the process, it is shown that the relaxed state is far from the constant- alpha linear force-free field that would be predicted by Taylor's conjecture.  相似文献   

3.
The evolution of the magnetic helicity tensor for a nonzero mean magnetic field and for large magnetic Reynolds numbers in an anisotropic turbulence is studied. It is shown that the isotropic and anisotropic parts of the magnetic helicity tensor have different characteristic times of evolution. The time of variation of the isotropic part of the magnetic helicity tensor is much larger than the correlation time of the turbulent velocity field. The anisotropic part of the magnetic helicity tensor changes for the correlation time of the turbulent velocity field. The mean turbulent flux of the magnetic helicity is calculated as well. It is shown that even a small anisotropy of turbulence strongly modifies the flux of the magnetic helicity. It is demonstrated that the tensor of the magnetic part of the alpha effect for weakly inhomogeneous turbulence is determined only by the isotropic part of the magnetic helicity tensor.  相似文献   

4.
Using the field theoretic renormalization group technique the model of passively advected weak magnetic field by an incompressible isotropic helical turbulent flow is investigated up to the second order of the perturbation theory (two-loop approximation) in the framework of an extended Kazantsev-Kraichnan model of kinematic magnetohydrodynamics. Statistical fluctuations of the velocity field are taken in the form of a Gaussian distribution with zero mean and defined noise with finite correlations in time. The two-loop analysis of all possible scaling regimes is done and the influence of helicity on the stability of scaling regimes is discussed and shown in the plane of exponents ? ? η, where ? characterizes the energy spectrum of the velocity field in the inertial range Ek 1 ? 2ε, and η is related to the correlation time at the wave number k which is scaled as k ?2 + η. It is shown that in non-helical case the scaling regimes of the present vector model are completely identical and have also the same properties as those obtained in the corresponding model of passively advected scalar field. Besides, it is also shown that when the turbulent environment under consideration is helical then the properties of the scaling regimes in models of passively advected scalar and vector (magnetic) fields are essentially different. The results demonstrate the importance of the presence of a symmetry breaking in a given turbulent environment for investigation of the influence of an internal tensor structure of the advected field on the inertial range scaling properties of the model under consideration and will be used in the analysis of the influence of helicity on the anomalous scaling of correlation functions of passively advected magnetic field.  相似文献   

5.
6.
Various aspects of the influence of an external magnetic field on turbulent flow of a conducting fluid are investigated. The distributions of electric variables are determined for weak magnetic fields (both the electric field and the current have nonzero values in this case). For very strong magnetic fields it is shown that turbulent motion acquires a two-dimensional character. The emergence of an electric current component perpendicular to the flow and to the magnetic field is described in the case of a temperature-stratified medium in the presence of turbulent heat flux. Zh. éksp. Teor. Fiz. 111, 528–535 (February 1997)  相似文献   

7.
We present a magnetohydrodynamic (MHD) shell model suitable for computation of various energy fluxes of MHD turbulence for very small and very large magnetic Prandtl numbers Pm; such computations are inaccessible to direct numerical simulations. For small Pm, we observe that both kinetic and magnetic energy spectra scale as k?5/3 in the inertial range, but the dissipative magnetic energy scales as k?11/3exp?(? k/kη). Here the kinetic energy at large length scale feeds the large-scale magnetic field that cascades to small-scale magnetic field, which gets dissipated by Joule heating. The large-Pm dynamo has a similar behaviour except that the dissipative kinetic energy scales as k?13/3. For this case, the large-scale velocity field transfers energy to the large-scale magnetic field, which gets transferred to small-scale velocity and magnetic fields; the energy of the small-scale magnetic field also gets transferred to the small-scale velocity field, and the energy thus accumulated is dissipated by the viscous force.  相似文献   

8.
The results of an experimental study of the influence of unstable MHD modes on plasma confinement in an L-2M stellarator are presented. The spectral and statistical characteristics of turbulent plasma simultaneously at both the edge and center of the plasma are investigated. It is shown that at constant power of electron-cyclotron heating of the plasma the energy content of the plasma depends strongly on the strength of the externally applied vertical magnetic field used to adjust the position of the plasma column. Appreciable degradation of plasma confinement is observed for values of the vertical field such that ideal MHD modes become unstable in the greater part of the plasma column. This in turn is due to the formation of a magnetic configuration with a magnetic “hump.” At the same time, in the edge plasma the instability of resistive-balloon modes grows, and turbulent particle transport increases. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 6, 407–412 (25 March 1999)  相似文献   

9.
Using the Fourier helical decomposition,we obtain the absolute statistical equilibrium spectra of left-and righthanded helical modes in the incompressible ideal Hall magnetohydrodynamics(MHD). It is shown that the left-handed helical modes play a major role on the spectral transfer properties of turbulence when the generalized helicity and magnetic helicity are both positive. In contrast, the right-handed helical modes will play a major role when both are negative. Furthermore, we also find that if the generalized helicity and magnetic helicity have opposite signs, the tendency of equilibrium spectra to condense at the large or small wave numbers will be presented in different helical sectors. This indicates that the generalized helicity dominates the forward cascade and the magnetic helicity dominates the inverse cascade properties of the Hall MHD turbulence.  相似文献   

10.
11.
A generalized vorticity is introduced whose self-linkage (the hybrid helicity) and flux are invariants of ideal incompressible magnetohydrodynamics (MHD) when the Hall term is included. A model of magnetofluid relaxation is constructed for Hall magnetohydrodynamics by assuming that the energy seeks the minimum value compatible with constrained values of magnetic helicity, hybrid helicity, axial magnetic flux, and fluid vorticity flux. As a result of the coupling of magnetic field to fluid vorticity in the generalized vorticity, it is found that the relaxed magnetic-field configuration need not be force free. The presence of a nonvanishing fluid vorticity is shown to be necessary for the existence of relaxed magnetic-field configurations that confine a finite plasma pressure. The study has potential relevance to the dynamics and morphology of space and cosmic plasmas, as well as to pressure confinement and current drive in fusion plasmas.  相似文献   

12.
It is demonstrated from observations that the Alfvénic aurora may be powered by a turbulent cascade transverse to the geomagnetic field from large MHD scales to small Alfvén wave scales of several electron skin depths and less. We show that the energy transport through the cascade is sufficient to drive the observed acceleration of electrons from near-Earth space to form the aurora. We find that regions of Alfvén wave dissipation, and particle acceleration, are localized or intermittent and embedded within a near-homogeneous background of large-scale MHD structures.  相似文献   

13.
在开源的CFD 工具包OpenFOAM 环境下开发了基于低磁雷诺数的磁流体湍流数值模拟求解器,对 2π ×1×1的方管中无磁场湍流和磁流体湍流进行直接数值模拟研究,给出了截面瞬时速度、平均速度的分布,截面对称中心线上的脉动速度的均方根值、湍动能的分布。计算结果表明,外加磁场对磁流体湍流具有抑制作用和并且这种抑制作用具有各向异性。  相似文献   

14.
Renormalized viscosity, renormalized resistivity, and various energy fluxes are calculated for helical magnetohydrodynamics using perturbative field theory. The calculation is of firstorder in perturbation. Kinetic and magnetic helicities do not affect the renormalized parameters, but they induce an inverse cascade of magnetic energy. The sources for the large-scale magnetic field have been shown to be (1) energy flux from large-scale velocity field to large-scale magnetic field arising due to non-helical interactions and (2) inverse energy flux of magnetic energy caused by helical interactions. Based on our flux results, a primitive model for galactic dynamo has been constructed. Our calculations yield dynamo time-scale for a typical galaxy to be of the order of 108 years. Our field-theoretic calculations also reveal that the flux of magnetic helicity is backward, consistent with the earlier observations based on absolute equilibrium theory.  相似文献   

15.
The problem on magnetohydrodynamic (MHD) flow of a solitary vortex across a magnetic field in a volume confined by rigid walls is solved numerically for large Reynolds numbers (including magnetic Reynolds numbers) and small Alfven-Mach numbers M A . In this case, the MHD problem is reduced to that of two-dimensional hydrodynamic turbulence. It is shown that sound is not generated by a turbulent medium for small values of M A ; consequently, this kinetic energy dissipation channel is closed in this case. Calculations show that, in contrast to 3D turbulence, kinetic energy dissipation for 2D turbulence occurs, as expected, over time periods on the order of L2/v(L is the characteristic size of the system and v is the kinematic viscosity). In our calculations with numerical viscosity vvΔxx is the unit cell size), this corresponds to time values on the order of ~(Lx)(L/v). In the kinetic energy spectra for a turbulent flow in a bounded region in the inertial interval (lying between the energy-carrying and viscosity regions), the values of E(k) decrease with increasing wave numbers k at a higher rate than in proportion to k?3. The volume distribution of vorticity becomes narrower with time (the characteristic values of curlv decrease) and is blurred; for large time periods, the distribution approximately retains its shape as well as asymmetry with respect to positive and negative values, which is associated with the asymmetry of the initial conditions.  相似文献   

16.
Stochastic and deterministic subgrid parameterisations are developed for the large eddy simulation (LES) of a turbulent channel flow with friction-velocity-based Reynolds number of Reτ = 950 and centreline-based Reynolds number of Re0 = 20,580. The subgrid model coefficients (eddy viscosities) are determined from the statistics of truncated reference direct numerical simulations (DNSs). The stochastic subgrid model consists of a mean-field shift, a drain eddy viscosity acting on the resolved field and a stochastic backscatter force of variance proportional to the backscatter eddy viscosity. The deterministic variant consists of a net eddy viscosity acting on the resolved field, which represents the net effect of the drain and backscatter. LES adopting the stochastic and deterministic models is shown to reproduce the time-averaged kinetic energy spectra of the DNS within the resolved scales.  相似文献   

17.
绕圆柱体自由表面磁流体流动和传热的研究   总被引:1,自引:0,他引:1  
本文对在不同雷诺数下,绕圆柱体的磁流体自由表面流动及传热进行了模拟,分析了磁场对绕流圆柱尾迹和涡分离的影响,获得了两种雷诺数下的电磁力密度、流场和温度场分布。结果表明,磁场不仅影响了流动的形态,而且对湍流有抑制作用,降低了自由表面的更新机制,从而减少了传热能力;在相同的Hartmann数下,相比低雷诺数下的流动换热情况,高雷诺数下的湍流不能被完全抑制,自由表面与尾迹的相互作用也较强,因而自由表面换热也较强。  相似文献   

18.
Large scale dynamos produce small scale current helicity as a waste product that quenches the large scale dynamo process (alpha effect). This quenching can be catastrophic (i.e., intensify with magnetic Reynolds number) unless one has fluxes of small scale magnetic (or current) helicity out of the system. We derive the form of helicity fluxes in turbulent dynamos, taking also into account the nonlinear effects of Lorentz forces due to fluctuating fields. We confirm the form of an earlier derived magnetic helicity flux term, and also show that it is not renormalized by the small scale magnetic field, just like turbulent diffusion. Additional nonlinear fluxes are identified, which are driven by the anisotropic and antisymmetric parts of the magnetic correlations. These could provide further ways for turbulent dynamos to transport out small scale magnetic helicity, so as to avoid catastrophic quenching.  相似文献   

19.
Impulse formulations of Hall magnetohydrodynamic (MHD) equations are developed. The Lagrange invariance of a generalized ion magnetic helicity is established for Hall MHD. The physical implications of this Lagrange invariant are discussed. The discussion is then extended to compressible Hall MHD and a generalized ion magnetic potential helicity Lagrange invariant is established. The physical implications of the generalized ion magnetic potential helicity Lagrange invariant are shown to be the same, as to be expected, as those of the generalized ion magnetic helicity Lagrange invariant.  相似文献   

20.
We present the results of an experimental study of the spatial Fourier modes of the vorticity in a turbulent jet flow. By means of an acoustic scattering setup we have recorded the evolution in time of Fourier modes of the vorticity field, characterized by well defined wavevectors k. By computing the auto-correlation of the amplitude of the Fourier modes we evidence that, whatever the length scale (or equivalently k), the dynamic evolution of the vorticity field involves two well separated time scales. We have also performed the simultaneous acquisitions of pairs of Fourier modes with two wavevectors k and k'. Whatever the spectral gap k- k', any pair of Fourier modes exhibits a significant cross-correlation over long time delays, indicating a strong statistical dependence between scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号