首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several N(‐hydroxyalkyl)‐2,4‐dinitroanilines were transformed into their phosphoramidites (see 5 and 6 in Scheme 1) in view of their use as fluorescence quenchers, and modified 2‐aminobenzamides (see 9, 10, 18 , and 19 in Scheme 1) were applied in model reactions as fluorophors to determine the relative fluorescence quantum yields of the 3′‐Aba and 5′‐Dnp‐3′‐Aba conjugates (Aba=aminobenzamide, Dnp=dinitroaniline). Thymidine was alkylated with N‐(2‐chloroethyl)‐2,4‐dinitroaniline ( 24 ) to give 25 which was further modified to the building blocks 27 and 28 (Scheme 3). The 2‐amino group in 29 was transformed by diazotation into the 2‐fluoroinosine derivative 30 used as starting material for several reactions at the pyrimidine nucleus (→ 31, 33 , and 35 ; Scheme 4). The 3′,5′‐di‐O‐acetyl‐2′‐deoxy‐N2‐[(dimethylamino)methylene]guanosine ( 37 ) was alkylated with methyl and ethyl iodide preferentially at N(1) to 43 and 44 , and similarly reacted N‐(2‐chloroethyl)‐2,4‐dinitroaniline ( 24 ) to 38 and the N‐(2‐iodoethyl)‐N‐methyl analog 50 to 53 (Scheme 5). The 2′‐deoxyguanosine derivative 53 was transformed into 3′,5′‐di‐O‐acetyl‐2‐fluoro‐1‐{2‐[(2,4‐dinitrophenyl)methylamino]ethyl}inosine ( 54 ; Scheme 5) which reacted with 2,2′‐[ethane‐1,2‐diylbis(oxy)]bis[ethanamine] to modify the 2‐position with an amino spacer resulting in 56 (Scheme 6). Attachment of the fluorescein moiety 55 at 56 via a urea linkage led to the doubly labeled 2′‐deoxyguanosine derivative 57 (Scheme 6). Dimethoxytritylation to 58 and further reaction to the 3′‐succinate 59 and 3′‐phosphoramidite 60 afforded the common building blocks for the oligonucleotide synthesis (Scheme 6). Similarly, 30 reacted with N‐(2‐aminoethyl)‐2,4‐dinitroaniline ( 61 ) thus attaching the quencher at the 2‐position to yield 62 (Scheme 7). The amino spacer was again attached at the same site via a urea bridge to form 64 . The labeling of 64 with the fluorescein derivative 55 was straigthforward giving 65 . and dimethoxytritylation to 66 and further phosphitylation to 67 followed known procedures (Scheme 7). Several oligo‐2′‐deoxynucleotides containing the doubly labeled 2′‐deoxyguanosines at various positions of the chain were formed in a DNA synthesizer, and their fluorescence properties and the Tms in comparison to their parent duplexes were measured (Tables 15).  相似文献   

2.
Impurities in crude oily dithiocarbazic acid (2′-methoxy)-ethyl ester causing troubles in the ring closure to 5-(2′-methoxy-ethylthio)-1,3,4-thiadiazol-2(3H)-one and in succeeding reactions are eliminated by using the crystalline 3-isopropylidene-dithiocarbazic acid (2′-methoxy)-ethyl ester, which can be obtained directly by alkylation of potassium dithiocarbazate with 2-methoxy-ethyl bromide in presence of acetone. By the action of phosgene followed by that of water, the isopropylidene compound yields the oily 5-(2′-methoxy-ethylthio)-1,3,4-thiadiazol-2(3H)-one by splitting off the isopropylidene group and by ring closure in one single step.  相似文献   

3.
2,2′-Diketospirilloxanthin and 2,2′-diketobacterioruberin have been prepared via the corresponding 15,15′-dehydro compounds by condensation of 15,15′-dehydroapo-4,4′-carotenedial (C30) with 3-methoxy-(resp. 3-hydroxy)-3-methyl-2-butanone. 2,2′-Diketospirilloxanthin was identical with natural P 518.  相似文献   

4.
Polyacetylated 5,6,7,8-Tetrahydro-D - and L -neopterins. A Special Case of N(5)-Alkylation of 5,6,7,8-Tetrahydroneopterins Improved conditions are reported for the preparation of the earlier described (6R)- and (6S)-1′-O,2′-O,3′-O,2-N,5-pentaacetyl-5,6,7,8-tetrahydro-L -neopterins, one of which could be obtained as pure crystals. Its structure, determined by X-ray-diffraction analysis, corresponds to the (6R)-enantiomer. The method has also been used to make the corresponding D -diastereoisomers. Further acetylation of (6RS)-1′-O,2′-O,3′-O,2-N-tetraacetyl-5,6,7,8-tetrahydro-D -neopterin under drastic conditions yields a mixture of several polyacetylated D -neopterin derivatives and a polyacetylated ethyl-tetrahydro-D -neopterin which was isolated in crystalline form and established by X-ray-diffraction analysis to be (6R)-1′-O,2′-O,3′-O,4-O,2-N,2-N,8-heptaacetyl-5-ethyl-5,6,7,8-tetrahydro-D -neopterin.  相似文献   

5.
The application of the improved phosphoramidite strategy for the synthese of oligonucleotides using β-eliminating protecting groups to phospholipid chemistry offers the possibility to synthesize phospholipid conjugates of AZT ( 6 ) and cordycepin. The synthesis of 3′-azido-3′-deoxythymidine ( 6 ) was achieved by a new isolation procedure without chromatographic purification steps in an overall yield of 50%. Protected cordycepin ( = 3′-de-oxyadenosine) derivatives, the N6,2′-bis[2-(4-nitrophenyl)ethoxycarbonyl]cordycepin ( 12 ) and the N6,5′-bis[2-(4-nitrophenyl)ethoxycarbonyl]cordycepin ( 13 ) wre prepared by known methods and direct acylation of N6-[2-(4-nitrophenyl)ethoxycarbonyl]cordycepin ( 9 ), respectively. These protected nucleosides and the 3′-azido-3′-de-oxythymidine ( 6 ) reacted with newly synthesized and properly characterized lipid-phosphoramidites 21–25 , catalyzed by 1H-tetrazole, to the corresponding nucleoside-phospholipid conjugates 26–38 in high yield. The deprotection was accomplished via β-elimination with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in aprotic solvents to give analytically pure nucleoside-phospholipid diesters 39–51 as triethylammonium or sodium salts. The newly synthesized compounds were characterized by elemental analyses and UV and 1H-NMR spectra.  相似文献   

6.
An elegant one-step synthesis of two novel spiro ring systems viz: spiro[3H-indole-3,4′-(2′-amino-3′-carbonitrile-[4′H]-pyrano[3,2-c]benzopyran)]-2,5′(1H)-dione8 and spiro[(2-amino-3-carbonitrile-indeno[1,2-b]pyran)-4(5H)>3′-[3H]indole]-2′,5(1′H)-diones in 80–85% yields is described. The spiro heterocycles were prepared by the reactions of fluorine containing 3-dicyanomethylene-2H-indol-2-ones with 4-hydroxy-2H-1-benzopyran-2-one and 1H-indene-1,3(2H)-dione respectively. The synthesized compounds have been characterized on the basis of elemental analyses, ir, pmr, 19F nmr and mass spectral data.  相似文献   

7.
Intensive studies on the diazomethane methylation of the common ribonucleosides uridine, cytidine, adenosine, and guanosine and its derivatives were performed to obtain preferentially the 2′-O-methyl isomers. Methylation of 5′-O-(monomethoxytrityl)-N2-(4-nitrophenyl)ethoxycarbonyl-O6-[2-(4-nitrophenyl)ethyl]-guanosine ( 1 ) with diazomethane resulted in an almost quantitative yield of the 2′- and 3′-O-methyl isomers which could be separated by simple silica-gel flash chromatography (Scheme 1). Adenosine, cytidine, and uridine were methylated with diazomethane with and without protection of the 5′ -O-position by a mono- or dimethoxytrityl group and the aglycone moiety of adenosine and cytidine by the 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) group (Schemes 2–4). Attempts to increase the formation of the 2′-O-methyl isomer as much as possible were based upon various solvents, temperatures, catalysts, and concentration of the catalysts during the methylation reaction.  相似文献   

8.
9.
The structures of the main carotenoid pigments from the mutant 1-207 of Rhizobium lupini were elucidated by spectroscopic techniques (UV./VIS., CD., 270 MHz 1H-NMR., and MS.). Ten carotenoids were identified, namely β,β-carotene ( 1 ), β,β-caroten-4-one (echinenone, 2 ), β,β-carotene-4,4′-dione (canthaxanthin, 3 ), (3S)-3-hydroxy-β,β-caroten-4-one ((3S)-3-hydroxyechinenone, 4 ), (2R, 3R)-β,β-carotene-2,3-diol ( 5 ), (3S)-3-hydroxy-β,β-carotene-4,4′-dione ((3S)-adonirubin, 6 ), (2R, 3S)-2,3-dihydroxy-β,β-caroten-4-one ( 7 ), (2R, 3S)-2,3-dihydroxy-β,β-caroten-4,4′-dione ( 8 ), (2R, 3S, 2′R, 3′R)-2,3,2′,3′-tetrahydroxy-β,β-caroten-4-one ( 9 ) and the corresponding (2R, 3S, 2′R, 3′S)-4,4′-dione ( 10 ). Structures 5, 7, 8 and 10 have not been reported before. From the observed carotenoid pattern it is concluded that in this mutant the oxidation to 4-oxo compounds is favoured compared to the hydroxylation at C(3) and C(2).  相似文献   

10.
C45- and C50-Carotenoids. Synthesis of an Optically Active Cyclic C20-Building Block and of (2R,2′S)-3′,4′-Didehydro-1′,2′-dihydro-2-(4-hydroxy-3-methylbut-2-enyl)-2′-(3-methylbut-2-enyl)-β,ψ-caroten-1′-ol (= C. p. 473) The synthesis of the optically active C20-building block (R)- 16 and of the optically active C50-carotenoid C.p. 473 ( 1 ) starting from (?)-β-pinene is reported.  相似文献   

11.
Asymmetric Michael-Additions Practically Completely Diastereo- and Enantloselective Alkylations of the Enamine from Cyclohexanone and Prolinyl Methyl Ether by ω-Nitrostyrenes to Give u2-(1′-Aryl-2′-nitroethyl)cyclohexanones When the enamine (S)-N-(1′cyclohexenyl)-2-methoxymethyl-pyrrolidine is added to 2-aryl-l-nitroethylenes, only one of the four possible enantiomerically pure diastereomers is formed. Hydrolysis of the crude primary products furnishes α-alkylated cyclohexanones of > 90% e. e. ( 3 , Scheme 3). Their (2S,1′R)-configuration was deduced by chemical correlation with l-cyclohexyl-l-phenyl-ethane and from an X-ray crystal structure analysis of (?)-(2R,3S,6′R1,l″S′)-3-methyl-N-[6′-(2″-nitro-l″-phenylethyl)-l′-cyclohexenyl]-2-phenylmorpholine ( lla , Scheme 5 and Fig. 2). - The relative topicity of reactant approach with the prolinol derivative (see II ) is specified as lkul-l,4. The steric course and the mechanism of the reaction are discussed.  相似文献   

12.
Four chiral polymers P-1, P-2, P-3 and P-4 were synthesized by the polymerization of (S)-2,2'-dioctoxy-1,1'- binaphthyl-6,6'-boronic acid (S-M-3) with (S)-6,6'-dibromo-1,1'-binaphthol (S-M-1), (R)-6,6'-dibromo-1,1'- binaphthol (R-M-1), (S)-3,3'-diiodo-1,1'-binaphthol (S-M-2) and (R)-3,3'-diiodo-1,1'-binaphthol (R-M-2) under Pd-catalyzed Suzuki reaction, respectively. All four polymers can show good solubility in some common solvents due to the nonplanarity of the polymers in the main chain backbone and flexible alkyl groups in the side chain. The analysis results indicate that specific rotation and circular dichroism (CD) spectral signals of the alternative S-S chiral polymers P-1 and P-3 are larger than those of S-R chiral polymers P-2 and P-4, but their UV-Vis and fluorescence spectra are almost similar. The results of asymmetric enantioselectivity of four polymers for diethylzinc addition to benzaldehyde indicate that catalytically active center is (R) or (S)-1, 1'-binaphthol moieties.  相似文献   

13.
An efficient synthesis of the unknown 2′-deoxy-D-threo-tubercidin ( 1b ) and 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) as well as of the related nucleosides 9a, b and 10b is described. Reaction of 4-chloro-7-(2-deoxy-β-D-erythro-pentofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine ( 5 ) with (tert-butyl)diphenylsilyl chloride yielded 6 which gave the 3′-keto nucleoside 7 upon oxidation at C(3′). Stereoselective NaBH4 reduction (→ 8 ) followed by deprotection with Bu4NF(→ 9a )and nucleophilic displacement at C(6) afforded 1b as well as 7-deaza-2′-deoxy-D-threo-inosine ( 9b ). Mesylation of 4-chloro-7-{2-deoxy-5-O-[(tert-butyl)diphenylsilyl]-β-D-threo-pentofuranosyl}-7H-pyrrolo[2,3-d]-pyrimidine ( 8 ), treatment with Bu4NF (→ 12a ) and 4-halogene displacement gave 2′, 3′-didehydro-2′, 3′-dideoxy-tubercidin ( 3 ) as well as 2′, 3′-didehydro-2′, 3′-dideoxy-7-deazainosne ( 12c ). On the other hand, 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) resulted from 8 by treatment with diethylamino sulfurtrifluoride (→ 10a ), subsequent 5′-de-protection with Bu4NF (→ 10b ), and Cl/NH2 displacement. 1H-NOE difference spectroscopy in combination with force-field calculations on the sugar-modified tubercidin derivatives 1b , 2 , and 3 revealed a transition of the sugar puckering from the 3′T2′ conformation for 1b via a planar furanose ring for 3 to the usual 2′T3′ conformation for 2.  相似文献   

14.
Stereospecific cyclizations of (3′R, 7′R, 11′R)-α-tocopherolquinone (2) are reported: Treatment with conc. sulfuric acid in methanol at 0-5° gave (2R, 4′R, 8′R)-α-tocopherol (1a) with complete retention of configuration at C-3′.  相似文献   

15.
16.
Nucleosides and Nucleotides. Part 20, Synthesis of Desoxyribooligonucleotides According to the Diester and Triester Method with 2(1H)-Pyrimidinone as Base The syntheses of the dinucleosidemonophosphate 1-(2′-deoxy-b?-D -ribofuranosyl)-2(1H)-pyrimidinon-(3′-5′)-2′-deoxycytidine (MdpCd; 4 ) and the trinucleoside-diphosphate thymidyl-(3′-5′)-thymidylyl-(3′-5′)-1-(2′-deoxy-b?-D -ribofuranosyl)-2(1H)pyrimidinon (TdpTdpMd; 1 ) are described, Compound 1 was synthesized by different variants of the triester method, and 4 by the diester method as well as the triester method.  相似文献   

17.
Nucleosides and Nucleotide. Part 15. Synthesis of Deoxyribonucleoside Monophosphates and Triphosphates with 2(1H)-Pyrimidinone, 2(1H)-Pyridinone and 4-Amino-2(1H)-pyridinone as the Bases The phosphorylation of the modified nucleosides 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyrimidinone (Md, 4 ), 4-amino-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone (Zd, 6 ) and the synthesis of 1–2′-deoxy-β-D -ribofuranosyl-2(1 H)-pyrimidinone-5′-O-triphosphate (pppMd, 1 ), 1-(2′-deoxy-β-D ribofuranosyl)-2(1 H)-pyridinone-5′-O-triphosphate (pppIId, 2 ), and 4-amino-1-(2′-deoxy-βD -ribofuranosyl)-2(1 H)-pyridinone-5′-O-triphosphate (pppZd, 3 ) are described. The nucleoside-5′-monophosphates pMd (5) and pZd (7) were obtained by selective phosphorylation of Md (4) and Zd (6) , respectively, using phosphorylchloride in triethyl phosphate or in acetonitril. The reaction of pMd (5) pII d (8) or pZd (7) with morpholine in the presence of DCC led to the phosphoric amides 9, 10 and 11 , respectively, which were converted with tributylammonium pyrophosphate in dried dimethylsulfoxide to the nucleoside-5′triphosphates 1, 2 and 3 , respectively.  相似文献   

18.
Preparation of Styryl and Stilbenyl Derivatives of Pyrimidines 2- and 4-(p-Tolyl)-substituted pyrimidines react with anils of hetero-aromatic aldehydes in the presence of dimethylformamide and potassium hydroxide or potassium t-butoxide to yield the corresponding 2- and 4-[4″-(heteroaryl)stilben-4′-yl]pyrimidines or the 2- and 4-[a-(heteroaryl)-4′-styryl]pyrimidines respectively (‘Anil synthesis’). Furthermore, the Schiff′s bases derived from p-chloroaniline and 4-(pyrimidine-2-yl and 4-yl)benzaldehydes give, with methyl- and with p-tolyl-substituted heterocycles, the corresponding heterocyclic substituted styryl and stilbenyl derivatives. Alkyl-, alkoxy- or phenyl-substituted pyrimidines undergo also the ‘Anil synthesis’.  相似文献   

19.
2-Chloro-3,4,5-tris(trifluoromethylthio)pyrrole ( 2a ), 3-Chloro-2,4,5-tris(trifluoromethylthio)pyarrole ( 2b ) and 3,4-dichloro-2,5-bis(trifluromoethylthio)pyrrole ( 2c ) react with silver nitrate/silver acetate in good yield to give the corresponding N-silver salts 3a-c . Compound 2b forms with an aqueous potassium hydroxide solution the N-potassium salt 4 . Compounds 3a and 3b react with iodine to give the dimeers 2,2′-dichloro-3,3,′ 4,4′5,5′-hexakis(trifluoromethylthio)-2,2′-bi-2H-pyrrolyl ( 5a ) and 3,3′-dichloro-2,2′,4,4′,5,5′-hexakis(trifluoromethylthio)-2,2′-bi-2H-pyrrolyl ( 5b ). The dimers dissociate in solution to the corresponding pyrrolayl radicals. The esr and endor spectra of 3-chloro-2,4,5-tris(trifluoromethylthio)pyrrolyl were measured; coupling constants are given. For the newly prepared substances melting-points, 19F-nmr and ir spectroscopical data are provided.  相似文献   

20.
The 5′-amino-5′-deoxy-2′,3′-O-isopropylideneadenosine ( 4 ) was obtained in pure form from 2′,3′-O-isopropylideneadenosine ( 1 ), without isolation of intermediates 2 and 3 . The 2-(4-nitrophenyl)ethoxycarbonyl group was used for protection of the NH2 functions of 4 (→7) . The selective introduction of the palmitoyl (= hexadecanoyl) group into the 5′-N-position of 4 was achieved by its treatment with palmitoyl chloride in MeCN in the presence of Et3N (→ 5 ). The 3′-O-silyl derivatives 11 and 14 were isolated by column chromatography after treatment of the 2′,3′-O-deprotected compounds 8 and 9 , respectively, with (tert-butyl)dimethylsilyl chloride and 1H-imidazole in pyridine. The corresponding phosphoramidites 16 and 17 were synthesized from nucleosides 11 and 14 , respectively, and (cyanoethoxy)bis(diisopropylamino)phosphane in CH2Cl2. The trimeric (2′–5′)-linked adenylates 25 and 26 having the 5′-amino-5′-deoxyadenosine and 5′-deoxy-5′-(palmitoylamino)adenosine residue, respectively, at the 5′-end were prepared by the phosphoramidite method. Similarly, the corresponding 5′-amino derivatives 27 and 28 carrying the 9-[(2-hydroxyethoxy)methyl]adenine residue at the 2′-terminus, were obtained. The newly synthesized compounds were characterized by physical means. The synthesized trimers 25–28 were 3-, 15-, 25-, and 34-fold, respectively, more stable towards phosphodiesterase from Crotalus durissus than the trimer (2′–5′)ApApA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号