首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The kinetics of hydrolysis of p‐nitrophenyl acetate catalyzed by α‐chymotrypsin (α‐CT) has been studied in the presence of several cationic surfactants having different head groups maintaining the dodecyl hydrophobic residue and bromide counterion. The enzyme activity was tested in the presence of dodecyl trimethylammonium bromide (DTAB), dodecylpyridinium bromide (DPB), dodecyldimethylethanolammonium bromide (DDMEAB), dodecyldiethylethanolammonium bromide (DDEEAB), benzyldimethyldodecylammonium bromide (BDDAB), and dodecyltriphenylphosphonium bromide (DTPB) surfactants. The extent of superactivity depends upon head groups of surfactants. The activity of α‐CT depends on the surfactant concentration and it varies with the surfactant head group dimensions (DTPB > DDEEAB > DTAB > BDDAB > DDMEAB > DPB). For all surfactants, DTPB exhibits highest superactivity. The effects of surfactants on the apparent kinetic parameters like Michaelis constant Km and the catalytic constant kcat have been determined. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 377–381, 2009  相似文献   

2.
The reactions of p‐nitrophenyl acetate (PNPA) and p‐nitrophenyl benzoate (PNPB) with α‐nucleophile oximates, that is, butane 2,3‐dione monoximate, pralidoximate, and other oximates have been studied in the presence of different cationic surfactants. The first‐order rate constant increases with increasing surfactant concentration. The extent of acceleration is dependent on the head group structure of surfactants. The PNPA is more reactive than PNPB toward all the nucleophiles at higher concentration of surfactants. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 57–64, 2009  相似文献   

3.
Pseudo‐first‐order rate constants for the nucleophilic debenzoylation reaction of p‐nitrophenyl benzoate with various hydroxamate ions [RC = ONHO?] were investigated in aqueous cationic micellar media at pH 7.8 and 27°C. The kinetic rate data of the reaction revealed that the nucleophilic reactivity sequence of these hydroxamate ions is generally benzohydroxamic acid > salicylhydroxamic acid > acetohydroxamic acid. The kobs value increases upon addition of cationic surfactants to the reaction medium involving interfacial ion exchange between bulk aqueous media and micellar pseudophase. The effect of surfactant head and tail group is discussed. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 106–112, 2010  相似文献   

4.
The reactions of diethyl 4‐nitrophenyl phosphate ( 1 ) with a series of nucleophiles: phenoxides, secondary alicyclic (SA) amines, and pyridines are subjected to a kinetic study. Under excess of nucleophile, all the reactions obey pseudo‐first‐order kinetics and are first order in the nucleophile. The nucleophilic rate constants (kN) obtained are pH independent for all the reactions studied. The Brønsted‐type plot (log kN vs. pKa nucleophile) obtained for the phenolysis is linear with slope β=0.21; no break was found at pKa 7.5, consistent with a concerted mechanism. The Brønsted‐type plots for the SA aminolysis and pyridinolysis are linear with slopes β=0.39 and 0.43, respectively, also suggesting concerted processes. The concerted mechanisms for the latter reactions are proposed on the basis of the lack of break in the Brønsted‐type plots and the instability of the hypothetical pentacoordinate intermediates formed in these reactions. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 708–714, 2011  相似文献   

5.
Nucleophilic fluorination of aroyl‐phenyl‐phosphinates is highly dependent on the nature of the alkoxy substituents attached to the phosphoryl group. A reaction of aroyl‐phenyl‐phosphinates with morpholinosulfur trifluoride was shown to be a convenient synthetic method for high‐yield synthesis of α,α‐difluorobenzyl‐phenyl‐phosphinates using steric protection of the phosphoryl group by a bulky isopropoxy substituent. The methyl esters of aroylphosphinic acids in the same reaction conditions yield (fluoro‐diaryl‐methyl)‐pentafluorophosphates as the main reaction products.  相似文献   

6.
Concerted nucleophilic aromatic substitution (CSNAr) has emerged as a powerful mechanistic manifold, in which nucleophilic aromatic substitution can proceed in one step without the need to form a Meisenheimer intermediate. However, all of the CSNAr reactions reported thus far require a stoichiometric strong base or activating reagent, and no catalytic variants have yet been reported. Herein, we report an N‐heterocyclic carbene (NHC)‐catalyzed intramolecular cyclization of acrylamides that contain a 2‐fluorophenyl group on the nitrogen through a CSNAr reaction. By using this catalytic method, it is possible to synthesize an array of quinolin‐2‐one derivatives, which are common structural motifs in pharmaceuticals and organic materials. DFT calculations unambiguously revealed that this reaction proceeds through the concerted nucleophilic aromatic substitution of aryl fluorides, in which a stereoelectronic σ (Cipso‐Cβ)→ σ*(Cipso‐F) interaction critically contributes to the stabilization of the transition state for the cyclization.  相似文献   

7.
We studied the nucleophilic addition of organocerium reagents to α‐alkoxy hydrazones. The results depend upon the organocerium reagents, the nature of protection for the hydroxy group, and the solvents used. Contrary to Grignard reagents, organocerium reagents derived from Grignard reagents effectively add to α‐alkoxy hydrazones. In addition, a new type of elimination reaction of α‐alkoxy hydrazones to the corresponding nitriles by methyl chloroformate was found. This methodology is an efficient and potentially practical synthetic route to β‐hydroxy amines. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:65–72, 2000  相似文献   

8.
9.
10.
A series of N‐aryl 2‐alkenamides were produced efficiently by treating N‐aryl 3‐(phenylsulfonyl)‐propanamides with potassium tert‐butoxide in THF at 0°C. With out isolation, it was further treated with an additional equivalent of potassium tert‐butoxide and allyl bromide to give N‐allyl N‐aryl 2‐alkenamides in one pot in good yields. Followed by a ring‐closing metathesis reaction, these N‐allyl N‐aryl 2‐alkenamides were respectively converted into corresponding N‐aryl α,β‐unsaturated γ‐lactams in moderate yields.  相似文献   

11.
The title compound, C23H32O4, has a 3β configuration, with the epoxy O atom at 16α,17α. Rings A and C have slightly distorted chair conformations. Because of the presence of the C5=C6 double bond, ring B assumes an 8β,9α‐half‐chair conformation slightly distorted towards an 8β‐sofa. Ring D has a conformation close to a 14α‐envelope. The acetoxy and acetyl substituents are twisted with respect to the average molecular plane of the steroid. The conformation of the mol­ecule is compared with that given by a quantum chemistry calculation using the RHF–AM1 (RHF = Roothaan Hartree–Fock) Hamiltonian model. Cohesion of the crystal can be attributed to van der Waals interactions and weak intermolecular C—H?O interactions, which link the mol­ecules head‐to‐tail along [101].  相似文献   

12.
13.
The reaction of Ph3P=NLi with various α,β‐unsaturated esters gives access to new N‐(α,β‐unsaturated acyl) phosphinimines, which can undergo intramolecular aza‐Wittig reactions (at 65–110°C) to afford the corresponding nitriles. The structures of all new compounds were established by elementary analyses, IR, 1H‐, 13C‐, and 31P‐NMR spectroscopy. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 49–54, 1999  相似文献   

14.
A series of optically active N‐protected α‐aminoketones were synthesized via the Grignard reaction of the Weinreb amides of the Ntert‐butoxycarbonyl amino acids. Reduction of the α‐aminoketones by sodium borohydride resulted in the corresponding 1,2‐amino alcohols. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:603–606, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10195  相似文献   

15.
A convenient synthetic method for N‐arylformamide derivatives was successfully developed by reacting α‐iodo‐N‐arylacetamides with formamide. This method was applicable to α‐iodo‐N‐arylacetamide substrates bearing electron‐donating or electron‐withdrawing groups, N‐(benzo[d][1,3]dioxol‐5‐yl)‐2‐iodoacetamide, 2‐iodo‐N‐(pyridin‐2‐yl)acetamide, and 2‐iodo‐N‐(naphthalen‐4‐yl)acetamide to give the corresponding N‐arylformamides in moderate to excellent yields (65–94%). A plausible mechanism was proposed to account for the new transformation.  相似文献   

16.
The nitro group of methyl 3‐nitropyridine‐4‐carboxylate ( 1 ) has successfully been replaced by nitrogen, oxygen and sulphur nucleophiles by nucleophilic aromatic substitution to give the 3‐azido, 3‐methoxy, 3‐phenoxy and 3‐thiophenoxypyridine‐4‐carboxylates ( 2a — d ).  相似文献   

17.
The polymerizations of α‐ethyl β‐N‐(α′‐methylbenzyl)itaconamates carrying (RS)‐ and (S)‐α‐methylbenzylaminocarbonyl groups (RS‐EMBI and S‐EMBI) with dimethyl 2,2′‐azobisisobutyrate (MAIB) were studied in methanol (MeOH) and in benzene kinetically and with electron spin resonance (ESR) spectroscopy. The initial polymerization rate (Rp) at 60 °C was given by Rp = k[MAIB]0.58 ± 0.05[RS‐EMBI]2.4 ± 0.l and Rp = k[MAIB]0.61 ± 0.05[S‐EMBI]2.3 ± 0.l in MeOH and Rp = k[MAIB]0.54 ± 0.05[RS‐EMBI]1.7 ± 0.l in benzene. The rate constants of initiation (kdf), propagation (kp), and termination (kt) as elementary reactions were estimated by ESR, where kd is the rate constant of MAIB decomposition and f is the initiator efficiency. The kp values of RS‐EMBI (0.50–1.27 L/mol s) and S‐EMBI (0.42–1.32 L/mol s) in MeOH increased with increasing monomer concentrations, whereas the kt values (0.20?7.78 × 105 L/mol s for RS‐EMBI and 0.18?6.27 × 105 L/mol s for S‐EMBI) decreased with increasing monomer concentrations. Such relations of Rp with kp and kt were responsible for the unusually high dependence of Rp on the monomer concentration. The activation energies of the elementary reactions were also determined from the values of kdf, kp, and kt at different temperatures. Rp and kp of RS‐EMBI and S‐EMBI in benzene were considerably higher than those in MeOH. Rp of RS‐EMBI was somewhat higher than that of S‐EMBI in both MeOH and benzene. Such effects of the kinds of solvents and monomers on Rp were explicable in terms of the different monomer associations, as analyzed by 1H NMR. The copolymerization of RS‐EMBI with styrene was examined at 60 °C in benzene. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1819–1830, 2003  相似文献   

18.
19.
The complete assignment of the 1H and 13C NMR spectra of the diastereomeric pairs of some α‐arylsulfinyl‐substituted N‐methoxy‐N‐methylpropionamides with the substituents methoxy, methyl, chloro, nitro is reported. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A novel amine auxiliary for the asymmetric synthesis of α‐substituted N‐methylsulfonamides is described. The reaction of 4‐([1,1′‐biphenyl]‐4‐yl)‐2,2‐dimethyl‐1,3‐dioxan‐5‐amine ( 16 ) with various aliphatic sulfonyl chlorides afforded the corresponding sulfonamides, which were lithiated and subsequently reacted with electrophiles to give the corresponding products in high yields and good‐to‐excellent asymmetric inductions (de 83–95%). Racemization‐free cleavage of the auxiliary led to the α‐alkylated N‐methylsulfonamides in acceptable yields and high enantiomer purities (ee 91 to ≥98).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号