首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A concise review of papers published during the last 3 years about the synthesis, blends, processing, and applications of electronically conductive polymers, is presented in this article. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Conventional electrorheological (ER) fluids consist of electrically polarizable particles dispersed in an inert insulating liquid. They are characterized by a development of a yield stress upon application of an external electric field. They resemble Bingham fluids with yield stress value depending on electric field. A viscosity increase in the presence of an electric field has been also found in homogeneous solutions of liquid crystalline polymers with no yield stress observed. In this study these two types of fluids and combined dispersions of the solid particles in the liquid crystalline matrix were investigated. A lyotropic liquid crystalline polymer—poly(n‐hexyl isocyanate) (PHIC)—dissolved in xylene was chosen as the active matrix. The dispersed solid phase was comprised of two kinds of polymers: pyrolyzed polyacrylonitryle (PAN) showing electron conductivity, and PAN doped with two salts (KSCN, NaSCN), resulting in ionic conductivity. The rheological measurements under an electric field were performed. The pristine xylene solution of PHIC was characterized first as well as the 15% m/m dispersions of PAN powders in silicone oil. Then the dispersions in the liquid crystalline matrix were investigated showing a strong ER effect whose magnitude was considerably enhanced in comparison to both ER active components measured separately. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
We report here the synthesis via Suzuki polymerization of two novel alternating polymers containing 9,9‐dioctylfluorene and electron‐withdrawing 4,4′‐dihexyl‐2,2′‐bithiazole moieties, poly[(4,4′‐dihexyl‐2,2′‐bithiazole‐5,5′‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PHBTzF) and poly[(5,5′‐bis(2″‐thienyl)‐4,4′‐dihexyl‐2,2′‐bithiazole‐5″,5″‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PTHBTzTF), and their application to electronic devices. The ultraviolet–visible absorption maxima of films of PHBTzF and PTHBTzTF were 413 and 471 nm, respectively, and the photoluminescence maxima were 513 and 590 nm, respectively. Cyclic voltammetry experiment showed an improvement in the n‐doping stability of the polymers and a reduction of their lowest unoccupied molecular orbital energy levels as a result of bithiazole in the polymers' main chain. The highest occupied molecular orbital energy levels of the polymers were ?5.85 eV for PHBTzF and ?5.53 eV for PTHBTzTF. Conventional polymeric light‐emitting‐diode devices were fabricated in the ITO/PEDOT:PSS/polymer/Ca/Al configuration [where ITO is indium tin oxide and PEDOT:PSS is poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid)] with the two polymers as emitting layers. The PHBTzF device exhibited a maximum luminance of 210 cd/m2 and a turn‐on voltage of 9.4 V, whereas the PTHBTzTF device exhibited a maximum luminance of 1840 cd/m2 and a turn‐on voltage of 5.4 V. In addition, a preliminary organic solar‐cell device with the ITO/PEDOT:PSS/(PTHBTzTF + C60)/Ca/Al configuration (where C60 is fullerene) was also fabricated. Under 100 mW/cm2 of air mass 1.5 white‐light illumination, the device produced an open‐circuit voltage of 0.76 V and a short‐circuit current of 1.70 mA/cm2. The fill factor of the device was 0.40, and the power conversion efficiency was 0.52%. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1845–1857, 2005  相似文献   

4.
In this study, four novel silafluorene (SiF) and benzotriazole (Btz) bearing conjugated polymers are synthesized. In the context of electrochemical and optical studies, these polymers are promising materials both for electrochromic device (ECD) and polymer solar cell (PSC) applications. All of the polymers are ambipolar (both p‐ and n‐dopable) and multichromic. Electrochemistry experiments indicate that incorporation of selenophene instead of thiophene unit increases the HOMO energy level of the polymers. Power conversion efficiency of the PSCs reached 1.75% for PTBTSiF, 1.55% for PSBSSiF, 2.57% for PBTBTSiF, and 1.82% for PBSBSSiF. The hole mobilities of the polymers are estimated through space charge limited current (SCLC) model. PBTBTSiF has the highest hole mobility as 2.44 × 10?3 cm2 V s?1. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1541–1547  相似文献   

5.
A novel series of thiazolothiazole (Tz)‐based copolymers, poly[9,9‐didecylfluorene‐2,7‐diyl‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P1), poly[9,9‐dioctyldibenzosilole‐2,7‐diyl‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P2), and poly[4,4′‐bis(2‐ethylhexyl)‐dithieno[3,2‐b:2′,3′‐d]silole‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P3), were synthesized for the use as donor materials in polymer solar cells (PSCs). The field‐effect carrier mobilities and the optical, electrochemical, and photovoltaic properties of the copolymers were investigated. The results suggest that the donor units in the copolymers significantly influenced the band gap, electronic energy levels, carrier mobilities, and photovoltaic properties of the copolymers. The band gaps of the copolymers were in the range of 1.80–2.14 eV. Under optimized conditions, the Tz‐based polymers showed power conversion efficiencies (PCEs) for the PSCs in the range of 2.23–2.75% under AM 1.5 illumination (100 mW/cm2). Among the three copolymers, P1, which contained a fluorene donor unit, showed a PCE of 2.75% with a short‐circuit current of 8.12 mA/cm2, open circuit voltage of 0.86 V, and a fill factor (FF) of 0.39, under AM 1.5 illumination (100 mW/cm2). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
A rigid-rod aromatic poly(pyridinium salt) was synthesized and doped with iodine (I2) for making anhydrous electrorheological (ER) fluids. The I2-doped particles were further processed into ones having insulating skins. Dielectric properties and current densities of the suspensions containing these particles were studied to elucidate the roles of conductivity of the dispersed phase in the ER suspension. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
Polyaniline (PANI) is prepared by chemical polymerization of aniline in acidic medium using ammonium peroxydisulfate ((NH4)2S2O8) as oxidant. The polymer, with a conductivity of 25–30 S/cm, is used to formulate conducting paints. A stable paint with a conductivity of 10?3 S/cm is obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Conductive polymer (CP) coatings can improve the performance of metallic bioelectrodes in implantable devices, a benefit which is partially attributed to the “softer” material interface. However, due to the nature of CP fabrication on metallic substrates, accurate quantification of mechanical properties has been difficult to achieve. This study demonstrates that peak‐force quantitative nanomechanical mapping (PF‐QNM) is a robust technique for determining the modulus of CP coatings. The effect of dopant size, chemistry, and film hydration on the mechanical properties of poly(3,4‐ethylene dioxythiophene) (PEDOT) is also examined. Analysis of PEDOT doped with poly(styrene sulfonate) produced across five different thicknesses confirms the utility of PF‐QNM in yielding quantitative, repeatable moduli in both the dry and hydrated state. By doping PEDOT with paratoluene sulfonate and perchlorate (ClO4) it is shown that the hydrophilicity and the size of the dopant are both critical factors influencing CP mechanical properties in the hydrated environment. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 666–675  相似文献   

9.
Fluorescence spectroscopy is an important analytical technique that has been widely used in a variety of applications, such as biomedicine, biology, and science of materials, because it presents some properties which makes it unique, that is, extraordinary sensitivity and selectivity, short delay time (<10(-9) s), and it is neither invasive nor destructive, so it can be used for in situ measurements. Generally, intrinsic fluorescence of many materials, like polymers, is unspecific so it is not useful to analyse their properties or to be correlated to changes in their microenvironment. The incorporation of additives with fluorescent groups would be necessary. When the fluorescence emission of these molecules is sensitive to changes of properties, such as polarity, fluidity, order, molecular mobility, pH, or electric potential, they can be used for detecting such changes in their microenvironment, and they are called fluorescent probes. As long as these probes can follow processes of practical interest, they can be employed as sensors, if the information given by the measure of fluorescence adequately reflects the changes in the system. In addition, a sensor must fulfil some other requirements in order to make them of practical use, the most important being that the material support in which the sensor molecule is inserted. This support should permit a rapid detection of the process and should allow easy processing in a variety of forms. Polymers are well-known systems in which estimation of local parameters are possible by means of fluorimetric techniques. It allows the study of dynamic processes of interest, such as polymerization kinetics and mechanisms, thermal transitions, photodegradation, swelling morphology changes, and so forth.  相似文献   

10.
Conjugated polymers display unique electronic and optical properties, which favor their use in applications as optoelectronic materials and molecular devices. Despite the recent remarkable progress in the chemistry of conjugated polymers, the synthesis of conjugated polymers containing cyclophane units in the main chain is limited to only a few examples. This Minireview presents recent developments in the synthesis, properties, and applications of through-space conjugated polymers based on cyclophanes.  相似文献   

11.
导电聚合物基电致变色器件的研究进展   总被引:1,自引:0,他引:1  
导电聚合物作为电致变色活性材料是目前最有应用前景的智能材料之一。本文概述了电致变色器件的基本结构和导电聚合物的电致变色机理,着重介绍了多种导电聚合物基电致变色器件的特点、组成及制备,并展望了未来电致变色器件的发展及应用趋势。  相似文献   

12.
Low‐band gap selenophene‐based polymers were synthesized. Their optoelectronic and photovoltaic properties and space‐charge limited currents were compared with those of the related thiophene‐based polymers. The band gaps of the Se‐based derivatives were approximately 0.05–0.12 eV lower than those of their thiophene counterparts. Organic photovoltaic (OPV) devices based on the blends of these polymers and 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl‐[6,6]‐C71 (PC71BM) were fabricated, and the maximum power conversion efficiency of the OPV device based on PSPSBT and PC71BM was 3.1%—with a short‐circuit current density (Jsc) of 9.3 mA cm?2, an open‐circuit voltage (Voc) of 0.79 V, and a fill factor of 0.42—under AM 1.5 G illumination (100 mW cm?2). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4550–4557  相似文献   

13.
A monomer containing bent side chains with oxadiazole unit was synthesized. And it was copolymerized with polyfluorene at different ratios. The photophysical and electrochemical properties of the copolymers were characterized. The results show that the introduction of the oxidiazole‐containing side chains into the polymer reduces the lowest unoccupied molecular orbital level. And the steric hindrance of the side groups can effectively suppress the aggregation of the polymer backbones. Electroluminescent devices were fabricated with a configuration of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene (PEDOT):PSS/Sample/Ca/Al. All of the devices emit blue light. The device of the copolymer PFOXD50 shows the best performance with the maximum luminance of 1033 cd/m2 and the maximum current efficiency of 0.29 cd/A. Then a cyclometalated iridium complex monomer (ppy)2Ir(BrPhPyBr) was copolymerized with PFOXD50 at different ratios. The devices with the same configuration emit orange light. The efficiency generally increases with the increasing Ir content. Among them, the device of the copolymer PFOXDIr7 shows the best performance with the maximum luminance of 846 cd/m2 and the maximum current efficiency of 0.61 cd/A. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
15.
This article describes the syntheses and electro‐optical applications of liquid crystalline (LC) conjugated polymers, for example, poly(p‐phenylenevinylene), polyfluorene, polythiophene, and other conjugated polymers. The polymerization involves several mechanisms: the Gilch route, Heck coupling, or Knoevenagel condensation for poly(p‐phenylenevinylene)s, the Suzuki‐ or Yamamoto‐coupling reaction for polyfluorenes, and miscellaneous coupling reactions for other conjugated polymers. These LC conjugated polymers are classified into two types: conjugated main chain polymers with long alkyl side chains, namely main‐chain type LC polymers, and conjugated polymers grafting with mesogenic side groups, namely side‐chain type LC conjugated polymers. In general, the former shows higher transition temperature and only nematic phase; the latter possesses lower transition temperature and more mesophases, for example, smectic and nematic phases, depending on the structure of mesogenic side chains. The fully conjugated main chain promises them as good candidates for polarized electroluminescent or field‐effect devices. The polarized emission can be obtained by surface rubbing or thermal annealing in liquid crystalline phase, with maximum dichroic ratio more than 20. In addition, conjugated oligomers with LC properties are also included and discussed in this article. Several oligo‐fluorene derivatives show outstanding polarized emission properties and potential use in LCD backlight application. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2713–2733, 2009  相似文献   

16.
Electrically conductive blends, containing two immiscible polymers (ethylene vinyl acetate, EVA‐19, and copolyamide 6/6.9, CoPA) and polyaniline (PANI), were produced by melt processing. These blends showed a preferred localization of PANI in the CoPA phase, thus enhancing the formation of continuous conducting networks. Electrically conductive PANI‐containing filaments produced by a capillary rheometer process at various shear rate levels were studied as sensing materials for a homologous series of alcohols (methanol, ethanol and 1‐propanol). All filaments showed a decreasing resistance upon exposure to these solvents. Filaments exposed to methanol, liquid or vapor, exhibited the highest resistance decrease. This behavior was related to the highest polarity of methanol, compared with ethanol and 1‐propanol. The filaments' rate of production significantly affects the relative resistance change upon exposure to the various alcohols and their reproducibility. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
舒昕  李兆祥  夏江滨 《化学进展》2015,27(4):385-394
自从1977年白川英树等发现聚乙炔这种导电聚合物以来,打破了高分子材料长期以来被认为是绝缘体的观点。随后聚苯胺、聚吡咯、聚噻吩等的出现使导电聚合物的种类不断出新,其用途也扩展到如导电材料、电极材料、催化材料以及太阳能电池等应用中,且已有部分产品实现了商品化。其中,聚噻吩因其良好的稳定性、易于制备、掺杂后具有良好的光电化学性能等特点而受到广泛关注。本文总结了几种合成聚噻吩及其衍生物的常见方法,包括化学氧化聚合法、电化学聚合法、金属催化偶联法、光致合成法、光电化学沉积法,以及近年来新发现的固相聚合法和酸催化聚合法,并简要介绍了各自的合成机理及优缺点。  相似文献   

18.
We use the long‐range‐corrected hybrid density functional theory models to study the effect of various conformational distortions of weak‐trans and strong‐cis nature on the spatial localization of charged states in poly(p‐phenylene vinylene) (PPV) and its derivative poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylene vinylene] (MEH‐PPV). The extent of self‐trapping of positive (P+) and negative (P?) polarons is observed to be highly sensitive to molecular conformation that, in turn, controls the distribution of atomic charges within the polymers. It is shown that, to reach good agreement with recent experimental data on lattice distortion for P+ and P? excitations, the polarization of the medium plays a critical role. The introduction of weak‐trans defects along the MEH‐PPV chain breaks the observed symmetry for P+ and P? excitations. The P? states exhibit more spatial localization owing to lattice relaxation than their vacuum counterparts in contrast to P+. These observations suggest higher mobilities of holes than that of electrons in MEH‐PPV, in agreement with the experimental observations. The predicted binding, reorganization, and solvation energies for PPV and MEH‐PPV are analyzed for this difference in the response behavior of holes and electrons for trans and cis distortions. This study allows for a better understanding of charge‐transport and photophysical properties in π‐conjugated organic materials by analyzing their underlying structure–property correlations. © 2013 Wiley Periodicals, Inc. 1 1 This article is a U.S. Government work, and as such, is in the public domain in the United States of America.
J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 935–942  相似文献   

19.
A comparative investigation was undertaken for the electrosynthesis and electrochemical properties of three different electroactive polymers having a conjugated core building block, dibenzo[a,c]phenazine. A series of monomers has been synthesized as regards to thiophene based units; thiophene, 3‐hexyl thiophene, and 3,4‐ethylenedioxythiophene. The effects of different donor substituents on the polymers' electrochemical properties were examined by cyclic voltammetry. Introducing highly electron‐donating (ethylene dioxy) group to the monomer enables solubility while also lowering the oxidation potential. The planarity of the monomer unit enhances π‐stacking and consequently lowering the Eg from 2.4 eV (PHTP) to 1.7 (PTBP). Cyclic voltammetry and spectroelectrochemical measurements revealed that 2,7‐bis(4‐hexylthiophen‐2‐yl)dibenzo[a,c]phenazine (HTP) and 2,7‐bis(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)dibenzo[a,c]phenazine (TBP) possessed electrochromic behavior. The colorimetry analysis revealed that while PTBP have a color change from red to blue, PHTP has yellow color at neutral state and blue color at oxidized state. Hence the presence of the phenazine derivative as the acceptor unit causes a red shift in the polymers' absorption to have a blue color. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1714–1720, 2010  相似文献   

20.
The synthesis of four alternating copolymers using benzo[2,1‐b;3,4‐b′]dithiophene (BDP) as the common donor unit is presented. Before the synthesis, theoretical calculations that we performed predicted that the incorporation of BDP, which consists of fused dithiophene units with a benzene ring, into these polymers would produce a low‐lying highest occupied molecular orbital (HOMO) energy level. Low‐lying HOMO levels are desirable to produce high open circuit voltages (VOC) in organic bulk heterojunction (BHJ) photovoltaic devices. The polymers' structural characterization, as well as the preliminary results of their performance in BHJ devices, using (6,6)‐phenyl C61‐butyric acid methyl ester as the electron acceptor, is presented. The VOC values follow the expected trend: increasing with decreasing HOMO level of the polymer. High VOC values of 0.81 and 0.82 V have been obtained from two polymers: PBDPBT and PBDPDPP. The initial power conversion efficiency achieved in these unoptimized devices was 1.11% because of relatively low JSC values. The variation observed in the JSC values between the four polymers is discussed. Device performance is expected to increase with optimization of processing conditions for the devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号