首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An amino isopropoxyl strontium (Sr‐PO) initiator, which was prepared by the reaction of propylene oxide with liquid strontium ammoniate solution, was used to carry out the ring‐opening polymerization (ROP) of cyclic esters to obtain aliphatic polyesters, such as poly(ε‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA). The Sr‐PO initiator demonstrated an effective initiating activity for the ROP of ε‐caprolactone (ε‐CL) and L‐lactide (LLA) under mild conditions and adjusted the molecular weight by the ratio of monomer to Sr‐PO initiator. Block copolymer PCL‐b‐PLLA was prepared by sequential polymerization of ε‐CL and LLA, which was demonstrated by 1H NMR, 13C NMR, and gel permeation chromatography. The chemical structure of Sr‐PO initiator was confirmed by elemental analysis of Sr and N, 1H NMR analysis of the end groups in ε‐CL oligomer, and Fourier transform infrared (FTIR) spectroscopy. The end groups of PCL were hydroxyl and isopropoxycarbonyl, and FTIR spectroscopy showed the coordination between Sr‐PO initiator and model monomer γ‐butyrolactone. These experimental facts indicated that the ROP of cyclic esters followed a coordination‐insertion mechanism, and cyclic esters exclusively inserted into the Sr–O bond. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1934–1941, 2003  相似文献   

2.
A series of macrocyclic aryl ketone oligomers were prepared by the reaction of phthaloyl dichloride or isophthaloyl dichloride with various bridge‐linking electron‐rich aromatic hydrocarbons 3a–d under pseudo‐high dilution conditions in the presence of Lewis base via Friedel–Crafts acylation reaction. Detailed structural characterization of these oligomers confirmed the cyclic nature by a combination of MALDI‐TOF‐MS, GPC, and 1H NMR analyses. These cyclic ketone oligomers have high solubility in organic solvents and the cyclic oligomers derived from phthaloyl dichloride are amorphous. The cyclic ketone oligomers readily undergo anionic ring‐opening polymerization in the melt by using potassium 4,4′‐biphenoxide as the initiator, producing linear, high molecular weight poly(ether ketone)s. Moreover, the isothermal chemorheology of the ring‐opening polymerization of cyclic oligomers 4a and 4b was also investigated. The results show that the shear viscosity of the molten reactive mixture is lower than 10 Pa · S at a constant shear rate of 0.05 rad/sec and increases slowly in the initial stage of ring‐opening polymerization. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The synthesis of macrocyclic polystyrene- block-poly(2-vinylpyridine) and macrocyclic polystyrene- block-poly(dimethylsiloxane) was carried out by initiation of 2-vinylpyridine (2VP) and hexamethyl-cyclotrisiloxane (D3) by difunctional living polystyryllithium followed by coupling with 1,4-bis(bromethyl)benzene (1,4-DBX) and dichloro-dimethylsilane (Cl2SiMe2), respectively. A small portion of the living ABA precursors were protonated to serve as isobaric linear precursors. The linear and macrocyclic block copolymers were characterized by size-exclusion chromatography (SEC). The ratios of apparent cyclic/linear SEC molecular-weight maxima versus degree of polymerization (DP) show increases with decreasing DP varying from 0.70 ± 0.03 at high DP ≤ 200 to 0.78 ± 0.044 at low DP (≥60) whereas that of the linear ABA block copolymers decreased. Increases in glass transition temperature (Tg) were also observed for the cyclic PS-b-PDMS copolymers with respect to the isobaric linear precursors. The macrocycles were characterized by 1H and 13C NMR and in the case of macrocyclic PS-b-PDMS by 29Si NMR as well. Broadening in the NMR absorptions of the macrocyclic block copolymers is general and is similar to that observed for the homopolymers. Differemtial scanning calorimetry (DSC) analysis of the PS-b-P2VP macrocycles shows increases in Tg at lower molecular weight as was observed for the PS and P2VP macrocycles.  相似文献   

4.
A simple, one‐step procedure has been developed for the preparation of bifunctional initiators capable of polymerizing monomers suitable for atom‐transfer radical polymerization (ATRP) and ring‐opening polymerization (ROP). These bifunctional initiators were employed for making narrow disperse poly(styrene) macroinitiators, which were subsequently used for the ROP of various lactides to yield poly(styrene‐block‐lactide) copolymers. Thermogravimetric analysis (TGA) of these block copolymers are interesting in that it shows a two‐step degradation curve with the first step corresponding to the degradation of poly(lactide) segment and the second step associated with the poly(styrene) segment of the block copolymer. This nature of the block copolymer makes it possible to estimate the block copolymer content by TGA in addition to the 1H NMR spectroscopic analysis. Thus, this study for the first time highlights the possibility of making porous materials by thermal means which are otherwise obtained by base hydrolysis. The bifunctional initiators were prepared by the esterification of 3‐hydroxy, 4‐hydroxy, and 3,5‐dihydroxy benzyl alcohols with α‐bromoisobutyryl bromide and 2‐bromobutyryl bromide. A mixture of products was obtained, which were purified by column chromatography. The esterified benzyl alcohols were employed in the polymerization of styrene under copper (Cu)‐catalyzed ATRP conditions to yield macroinitiators with low polydispersity. These macroinitiators were subsequently used in the ROP of L ‐, DL ‐, and mixture of lactides. The formation of block copolymers was confirmed by gel permeation chromatography (GPC), spectroscopic and thermal characterizations. The molecular weight of the block copolymers was always higher than the macroinitiator, and the GPC chromatogram was symmetrical indicating the uniform initiation of ROP by the macroinitiators. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 102–116, 2008  相似文献   

5.
In this study, the catalytic behavior of dual catalysis based on isothioureas (ITUs) for ring‐opening polymerization (ROP) of macrolactone ω‐pentadecalactone (PDL) and its copolymerization with ε‐caprolactone (CL) has been investigated in detail. In the presence of benzyl alcohol (BnOH) initiator, 2,3,6,7‐tetrahydro‐5H‐thiazolo[3,2‐a]pyrimidine (THTP) acted as a representative organic compound, which coupled with magnesium halides (MgX2) as cocatalysts and catalyzed the polymerization in toluene at 70 °C. Under suitable conditions, an array of polymers with controlled molecular weights and relatively narrow molecular weight distributions were synthesized. The formation of homopolymers and copolymers with different architectures was verified using GPC, DSC, NMR, and matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐ToF) mass. The MALDI‐ToF mass spectrometry (MS) analysis of poly(ω‐pentade‐calactone) (PPDL) provided direct evidence for the successful initiation of ROP of PDL using BnOH to obtain linear PPDL with a very small amount of oligomer. The NMR analysis indicated that the arrangements of PDL and CL units in the copolymer chains were completely random. The thermal stability of copolymers was composition dependent and increased with the increase in the content of PDL unit. Furthermore, the proposed polymerization mechanism is a dual catalytic mechanism. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   

6.
The microbisporicins are the most potent lantibiotics isolated to-date. Cyclic tetra-, hexa- and octapeptides, inspired by this family of antimicrobial agents, have been synthesized from linear peptides. Generalized reaction conditions are reported for the two-step conversion of linear peptides to thioether macrocycles: formation of a disulfide followed by reductive desulfurization. 1H NMR analysis of the reduction reaction mixture indicated the intermediacy of a dehydroalanine when excess hexamethylphosphorus triamide (HMPT) was employed for the reduction. Maintaining a stoichiometric amount of HMPT, in dilute methanolic solution, gave the corresponding thioethers, retaining stereochemical integrity.  相似文献   

7.
This article described the synthesis of cyclic poly(ε‐caprolactone) (PCL) via ring‐closing metathesis (RCM), ring closing enyne metathesis (RCEM), and “click” reaction of different difunctional linear PCL. Linear PCL precursors were prepared by ring‐opening polymerization (ROP) of ε‐caprolactone in bulk using 10‐undecen‐1‐ol or propargyl alcohol as the initiator, followed by reacting with corresponding acyl chloride containing vinyl or azido end group. The subsequent end‐to‐end intramolecular coupling reactions were performed under high dilution conditions. The successful transformation of linear PCL precursor to cyclic PCL was confirmed by Gel permeation chromatography, 1H NMR, and Fourier transform infrared measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3022–3033, 2009  相似文献   

8.
The composition of polyester polyols derived from terephthalic acid (TPA) and diethylene glycol (DEG) was examined. The synthesis of individual oligomers 1 , n is described. The compounds were characterized with 1H and 13C NMR, mass spectrometry, and elemental analyses. The resonance signals arising from aromatic protons in 1 , n = 1–3 were identified in 1H NMR spectra of TPA‐DEG condensates. From 1H NMR studies and chromatographic separation, it was concluded that the condensation of TPA and DEG in a 1:2 molar ratio results in a mixture of linear oligomers 1 with the average ñ varying from 1.1 to 2.2, and containing about 2% of cyclic oligomer 2 . © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1114–1123, 2003  相似文献   

9.
Summary: Biodegradable poly(1,5‐dioxepan‐2‐one) (PDXO) was grown directly from Si OH groups of a silica nanoparticle by surface‐initiated, ring‐opening polymerization (SI‐ROP) of 1,5‐dioxepan‐2‐one (DXO). The direct SI‐ROP of DXO was achieved by heating a mixture of Sn(Oct)2, DXO, and the silica nanoparticles (316 nm in diameter) in anhydrous toluene. The resulting silica/PDXO hybrid nanoparticles were characterized by means of 1H NMR spectroscopy, IR spectroscopy, thermogravimetric analysis, and field‐emission scanning electron microscopy.

The procedure for the surface‐initiated, ring‐opening polymerization of 1,5‐dioxepan‐2‐one on silica nanoparticles reported here.  相似文献   


10.
Two novel discotic macrocycles, substituted cyclohexa‐m‐phenylene (CHP) and cyclo‐3,6‐trisphenanthrylene (CTP), and the linear oligomer 3,3′:6′,3′′‐terphenanthrene (TP) as a model substance have been synthesized by repetitive cross‐coupling reactions. To correlate the molecular design with the supramolecular architecture and the established macroscopic order, 2D wide‐angle X‐ray scattering experiments were performed on mechanically extruded filaments. At room temperature in their crystalline phases, all three compounds revealed columnar assemblies in which the macrocycles self‐organized by π‐stacking interactions. The degree of macroscopic order was found to depend upon the planarity and stiffness of the aromatic core. The flexible CHP ring showed a poor macroscopic order of the columnar structures and a low isotropization temperature, whereas the more‐planar, less‐flexible CTP self‐assembled into well‐defined superstructures. The larger π‐stacking area and the more‐pronounced intermolecular interactions for CTP led to the formation of a mesophase over a very large temperature range. The surprising columnar organization of the “open” TP system was explained by back‐folding of the molecule into a ringlike structure.  相似文献   

11.
A novel hydroxy‐, methoxy‐, and phenoxy‐bridge “Mitsubishi emblem” tetranuclear aluminum complex ( 1 ) is synthesized from an unsymmetric amine‐pyridine‐bis(phenol) N2O2‐ligand (H2L1) and a symmetric amine‐tris(phenol) NO3‐ligand (H2L2). Two same configuration chiral nitrogen atoms are formed in the tetranuclear Al complex upon coordination of the unsymmetric tertiary amine ligand to central Al. Complex 1 initiates controlled ring‐opening polymerization (ROP) of rac‐lactide and afford polylactide (PLA) with narrow molecular weight distributions (Mw/Mn = 1.05–1.19). The analysis of 1H NMR spectra of the oligomer indicates that the methoxy group is the initiating group and the ring‐opening polymerization of lactide follows a coordination‐insertion mechanism. The Homonuclear decoupled 1H NMR spectroscopy suggests the isotactic‐rich chains is preferentially formed in PLA. The study on kinetics of the ROP of lactide reveals the homopropagation rate is higher than the cross‐propagation rate, which is in agreement with the observed isotactic selectivity in the ROP of rac‐lactide. The stereochemistry of the polymerization was also supported by activation parameters. The introduction of unsymmetric ligand H2L1 has an effect on stereoslectivity of polymerization. This result may be of interest for the design of multinuclear metal complex catalysts containing functionalized ligands. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2084–2091  相似文献   

12.
A series of macrocyclic arylene ether ketone oligomers from 4,4′-difluorobenzophenone, 2,4′-difluorobenzophenone and 1,3-bis(4′-fluorobenzoyl)benzene were prepared via aromatic nucleophilic substitution according to the pseudo-high dilution principle. Small-size aromatic macrocycles were isolated by silica gel column chromatography with cyclohexane/ethyl acetate as eluent. The chemical structures of these small-size macrocycles were characterized by matrix-assisted laser desorption ionization–time-of-flight–mass spectrometry (MALDI–TOF–MS), IR, 19F-,1H-, and 13C-NMR, and GPC techniques. Molecular chain length and steric hindrance of monomers affected the product compositions. The NMR results show that there are different chemical shifts in the different ring-size macrocyclic poly arylene ether ketones in spite of having the same repeating unit. The crystallizability and thermal properties of small-size arylene ether ketone macrocycles were also investigated by DSC, WAXD, TGA, and the results suggest that the crystallization and thermal properties are related to their intrinsic chemical structures. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1957–1967, 1999  相似文献   

13.
Enzymatic oxidative polymerization of a new para‐imine functionalized phenol derivative, 4‐(4‐hydroxybenzylideneamino)benzoic acid (HBBA), using horseradish peroxidase enzyme and hydrogen peroxide oxidizer has been investigated in an equivolume mixture of an organic solvent (acetone, methanol, ethanol, dimethylformamide, 1,4‐dioxane, and tetrahydrofuran) and phosphate buffer (pH = 5.0, 6.0, 6.8, 7.0, 7.2, 8.0, and 9.0) at different temperatures under air for 24 h. The resulting oligomer, oligo(4‐(4‐hydroxybenzylideneamino)benzoic acid) [oligo(HBBA)], was characterized using ultraviolet–visible, Fourier transform infrared (FT‐IR), 1H nuclear magnetic resonance (NMR), cyclic voltammetry, size exclusion chromatography, differential scanning calorimetry, and thermogravimetric analyses. Polymerization involved carbon dioxide and hydrogen elimination from the monomer, and terminal units of the oligomer structure consisted of phenolic hydroxyl (–OH) groups at the ends. The polymer is mainly composed of a mixture of phenylene and oxyphenylene units according to 1H NMR and FT‐IR analyses. Effects of solvent system, temperature and buffer pH on the polymerization have been investigated in respect to the yield and molecular weight (Mn) of the product. The best condition in terms of the highest molecular weight (Mn = 3000 g/mol, DP ~ 15) was achieved in an equivolume mixture of 1,4‐dioxane/pH 5.0 phosphate buffer condition at 35°C. Electrochemical characterization of oligo(HBBA) was investigated at different scan rates. The resulting oligomer has also shown relatively high thermal stability according to thermogravimetric analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The new Schiff base oligomer (oligo‐ortho‐chloroazomethinephenol) was synthesized by the condensation of ortho‐chloroaniline with oligosalicylaldehyde (OSA). Oligomer‐metal complexes of oligo‐ortho‐chloroazomethinephenol (OKAP) with Cu(II), Zn(II) and Co(II) were synthesized. The properties of OKAP and oligomer‐metal complexes were studied by elemental, UV‐Vis, 1H‐NMR, FT‐IR, magnetic susceptibility analyses. The number average molecular weight and mass average molecular weight OKAP were found to be 1494 g · mol?1 and 5418 g · mol?1, respectively. Elemental analyses of oligomer‐metal complexes suggest that the ratio of metal to oligomer is 1∶2. The results indicate that the OKAP coordinate through azomethine nitrogen and phenolic oxygen to the metal ions. Antimicrobial activity of OKAP was tested against S. cerevisiae, B. subtilis, E. coli, K. pneumoniae, M. luteus and S. aureus. The thermal stabilities of the OKAP and oligomer‐metal complexes were compared by thermogravimetric (TG) analyses. According to TG, OKAP, and oligomer‐metal complexes were stable against temperature and thermooxidative decomposition. The weight losses of OKAP and oligomer‐metal complexes were found to be at 400 and 800°C at 20.2 and 50.0 (OKAP), 17.1 and 41.1 (Cu(II)), 13.4 and 38.5 (Zn(II)), 18.3 and 68.2 (Co(II)), %, respectively. Based on half degradation temperature (T50%) parameters, Cu(II) and Zn(II) complexes were more resistant than the OKAP and Co(II) complex.  相似文献   

15.
Oligomer of 1-decene was synthesized with Ziegler-Natta catalyst which consisted of TiCl4 and Et2AlCl, using MgCl2 as support. The effects of temperature, Al/Ti ratio, time, and concentration of the catalyst on polymerization behaviors were investigated. The results showed that the catalyst system was desirable for the oligomerization of 1-decene with good catalytic activity, 143.8 kg oligo/mol Ti h, under typical conditions. The oligomer obtained was characterized with GC-MASS, GC and 13C NMR methods. Those results indicated that the oligomer was of a mixture consisting of di-, tri-, tetra- and pentamer. The 13C NMR data also implied that chain propagation of the oligomer involved primarily head-to-tail 1,2-insertions, as well as head-to-head and tail-to-tail 2,1-insertions.  相似文献   

16.
Poly(styrene) macromercaptanes (Mn = 1900, 3600, and 6100 g mol?1, PDI ≈ 1.2) derived from thiocarbonyl thio capped polymers prepared via reversible addition fragmentation chain transfer polymerization were employed to initiate the ring opening polymerization (ROP) of D ,L ‐lactide under conditions of organo‐catalyis employing 4,4‐dimethylaminopyridine. Poly(styrene)‐block‐poly(lactide) polymers of number average molecular weights up to 25,000 g mol?1 (PDI ≈ 1.2 to 1.6) were obtained and characterized via multiple detection size exclusion chromatography (SEC) using refractive index as well as UV detection. In addition, diffusion ordered nuclear magnetic resonance and liquid chromatography at critical conditions (of both polystyrene as well as poly(lactide) were employed to assess the copolymers' structure. Furthermore, it was demonstrated that polyethylenes capped with a thiol moiety can also be readily chain extended in a ROP employing D ,L ‐lactide, evidenced via NMR and high temperature SEC. This study indicates that the direct use of macromercaptantes is indeed a methodology to switch from a radical to a ROP process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Controllable synthesis of bio‐based polylactide (PLA) diols was realized by the ring‐opening polymerization (ROP) of lactide (LA) in the presence of 1,4‐butanediol (BDO) using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as an organocatalyst in solvent‐free conditions. The catalytic activity and conversion of LA could reach ∼1 kg g−1 DBU and >97%, respectively, and the polymerization yielded polymers with narrow polydispersity index (PDI) (1.15–1.29). Interestingly, the number average molecular weight (Mn) of the obtained PLA diol was in excellent linear relation with the molar ratio of LA and BDO, and hence can be precisely controlled. The structure of the diol was clearly confirmed by 1H and 13C NMR, FTIR, and MALDI‐TOF mass spectra, proving BDO as an initiation‐transfer agent to participate in the polymerization. Kinetic study of the ROP demonstrates a pseudo‐first‐order kinetic model and a controlled “living” nature. Notably, it is found that the glass transition temperature (Tg) of the diol significantly depends on the Mn. Furthermore, various chain transfer agents and organocatalysts can also be used to successfully synthesize well‐defined PLA diols. Especially, functional bio‐based dihydric alcohols such as 2,5‐furandimethanol (FDMO)‐initiated ROP in this system could result in fully bio‐based PLA diols with functionality. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 968–976  相似文献   

18.
研究了室温下间苯二酚和甲基乙烯基酮分别与β-环糊精( β-CD)形成包结物后的几种不同固相反应,结果表明包结物A(间苯二酚/β-CD)与包结物B(甲基乙烯基酮/β-CD)反应能够很好地得到目的产物,产率及ee值分别为82.8%和78.4%;间苯二酚与包结物B反应仅得到低光学活性产物(ee值为19.5%);包结物A与甲基乙烯基酮反应却没有得到手性目的产物。以熔点、X-粉末衍射、固相核磁碳谱及ROESY多种方法对所形成的包结物进行了表征,包结物中主客体的比例(1:1)通过1H NMR (400 MHz)得以确定,文章对固相环加成反应的机制也进行了初步探讨。  相似文献   

19.
A series of macrocycles containing isoxazoline and [1,4,2]dioxazole were synthesized for the first time. The structures of the newly synthesized macrocycles were characterized and confirmed by IR, 1H NMR, mass spectra, and elemental analysis. The solid‐state structure of macrocycle ( 6d ) was further studied by single‐crystal X‐ray diffraction analysis.  相似文献   

20.

Multiphase block copolymers having the structure of poly(?‐caprolacton‐b‐etyhlene glycol‐b‐styrene‐b‐ethylene glycol‐b‐?‐caprolacton) were synthesized from poly(ethylene oxide) possesing azo group in the main chain by the combination of free radical polymerization (FRP) of styrene (S) and ring opening polymerization (ROP) of ?‐caprolacton (?‐CL) in one‐step. The block copolymers were characterized 1H‐NMR and FT‐IR spectroscopy and gel permeation chromatography (GPC). 1H‐NMR and FT‐IR spectroscopy and GPC studies of the obtained polymers indicate that multiphase block copolymers easily formed as a result of combination FRP and ROP in one‐step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号