首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we recall the Oseen coupling method for solving the exterior unsteady Navier–Stokes equations with the non‐homogeneous boundary conditions. Moreover, we derive the coupling variational formulation of the Oseen coupling problem by using of the integral representations of the solution of the Oseen equations at an infinity domain. Finally, we provide some properties of the integral operators over the artificial boundary and the well‐posedness of the coupling variational formulation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Three penalty finite element methods are designed to solve numerically the steady Navier–Stokes equations, where the Stokes, Newton, and Oseen iteration methods are used, respectively. Moreover, the stability analysis and error estimate for these nine algorithms are provided. Finally, the numerical tests confirm the theoretical results of the presented algorithms. Meanwhile, the numerical investigations are provided to show that the proposed methods are efficient for solving the steady Navier–Stokes equations with the different viscosity. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 74‐94, 2014  相似文献   

3.
Two‐grid variational multiscale (VMS) algorithms for the incompressible Navier‐Stokes equations with friction boundary conditions are presented in this article. First, one‐grid VMS algorithm is used to solve this problem and some error estimates are derived. Then, two‐grid VMS algorithms are proposed and analyzed. The algorithms consist of nonlinear problem on coarse grid and linearized problem (Stokes problem or Oseen problem) on fine grid. Moreover, the stability and convergence of the present algorithms are established. Finally, Numerical results are shown to confirm the theoretical analysis. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 546–569, 2017  相似文献   

4.
The uniqueness class for the solutions to the Cauchy problem for flows modeled by the time-dependent Stokes and Oseen systems of equations is determined as in the growth class C exp(α|x|2). An example of a type considered by Tychonoff [Mat. Sb. 42 (1935), 199–216] is given that establishes the lack of uniqueness for such Stokes and Oseen systems. Even for the incompressible Navier–Stokes system, an example shows that rapidly growing nonphysical mathematical solutions exist.  相似文献   

5.
This paper is mainly devoted to a comparative study of two iterative least-squares finite element schemes for solving the stationary incompressible Navier–Stokes equations with velocity boundary condition. Introducing vorticity as an additional unknown variable, we recast the Navier–Stokes problem into a first-order quasilinear velocity–vorticity–pressure system. Two Picard-type iterative least-squares finite element schemes are proposed to approximate the solution to the nonlinear first-order problem. In each iteration, we adopt the usual L 2 least-squares scheme or a weighted L 2 least-squares scheme to solve the corresponding Oseen problem and provide error estimates. We concentrate on two-dimensional model problems using continuous piecewise polynomial finite elements on uniform meshes for both iterative least-squares schemes. Numerical evidences show that the iterative L 2 least-squares scheme is somewhat suitable for low Reynolds number flow problems, whereas for flows with relatively higher Reynolds numbers the iterative weighted L 2 least-squares scheme seems to be better than the iterative L 2 least-squares scheme. Numerical simulations of the two-dimensional driven cavity flow are presented to demonstrate the effectiveness of the iterative least-squares finite element approach.  相似文献   

6.
In this per, we consider a special class of initial data for the three‐dimensional incompressible Navier–Stokes equations with gravity. We show that, under such conditions, the incompressible Navier‐Stokes equations with gravity are globally well posed, and the velocity minus gravity term has finite energy. The important features of the initial data is that the velocity fields minus gravity term are almost parallel to the corresponding vorticity fields in a very large space domain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This paper utilizes the Picard method and Newton's method to linearize the stationary incompressible Navier–Stokes equations and then uses an LL* approach, which is a least-squares finite element method applied to the dual problem of the corresponding linear system. The LL* approach provides an L2-approximation to a given problem, which is not typically available with conventional finite element methods for nonlinear second-order partial differential equations. We first show that the proposed combination of linearization scheme and LL* approach provides an L2-approximation to the stationary incompressible Navier–Stokes equations. The validity of L2-approximation is proven through the analysis of the weak problem corresponding to the linearized Navier–Stokes equations. Then, the convergence is analyzed, and numerical results are presented.  相似文献   

8.
This paper is devoted to some mathematical questions related to the three‐dimensional stationary Navier–Stokes equations. Our approach is based on a combination of properties of Oseen problems in ?3. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Based on two‐grid discretizations, a two‐parameter stabilized finite element method for the steady incompressible Navier–Stokes equations at high Reynolds numbers is presented and studied. In this method, a stabilized Navier–Stokes problem is first solved on a coarse grid, and then a correction is calculated on a fine grid by solving a stabilized linear problem. The stabilization term for the nonlinear Navier–Stokes equations on the coarse grid is based on an elliptic projection, which projects higher‐order finite element interpolants of the velocity into a lower‐order finite element interpolation space. For the linear problem on the fine grid, either the same stabilization approach (with a different stabilization parameter) as that for the coarse grid problem or a completely different stabilization approach could be employed. Error bounds for the discrete solutions are estimated. Algorithmic parameter scalings of the method are also derived. The theoretical results show that, with suitable scalings of the algorithmic parameters, this method can yield an optimal convergence rate. Numerical results are provided to verify the theoretical predictions and demonstrate the effectiveness of the proposed method. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 425–444, 2017  相似文献   

10.
In this study, we consider a viscous compressible model of plasma and semiconductors, which is expressed as a compressible Navier‐Stokes‐Poisson equation. We prove that there exists a strong solution to the boundary value problem of the steady compressible Navier‐Stokes‐Poisson equation with large external forces in bounded domain, provided that the ratio of the electron/ions mass is appropriately small. Moreover, the zero‐electron‐mass limit of the strong solutions is rigorously verified. The main idea in the proof is to split the original equation into 4 parts, a system of stationary incompressible Navier‐Stokes equations with large forces, a system of stationary compressible Navier‐Stokes equations with small forces, coupled with 2 Poisson equations. Based on the known results about linear incompressible Navier‐Stokes equation, linear compressible Navier‐Stokes, linear transport, and Poisson equations, we try to establish uniform in the ratio of the electron/ions mass a priori estimates. Further, using Schauder fixed point theorem, we can show the existence of a strong solution to the boundary value problem of the steady compressible Navier‐Stokes‐Poisson equation with large external forces. At the same time, from the uniform a priori estimates, we present the zero‐electron‐mass limit of the strong solutions, which converge to the solutions of the corresponding incompressible Navier‐Stokes‐Poisson equations.  相似文献   

11.
In this paper, we investigate nonhomogeneous incompressible Navier–Stokes–Landau–Lifshitz system in two-dimensional (2-D). This system consists of Navier–Stokes equations coupled with Landau–Lifshitz–Gilbert equation, an evolutionary equation for the magnetization vector. We establish a blowup criterion for the 2-D incompressible Navier–Stokes–Landau–Lifshitz system with finite positive initial density.  相似文献   

12.
ABSTRACT

The combining quasineutral and inviscid limit of the Navier–Stokes–Poisson system in the torus 𝕋 d , d ≥ 1 is studied. The convergence of the Navier–Stokes–Poisson system to the incompressible Euler equations is proven for the global weak solution and for the case of general initial data.  相似文献   

13.
In this paper, we are concerned with the system of the non‐isentropic compressible Navier–Stokes equations coupled with the Maxwell equations through the Lorentz force in three space dimensions. The global existence of solutions near constant steady states is established, and the time‐decay rates of perturbed solutions are obtained. The proof for existence is due to the classical energy method, and the investigation of large‐time behavior is based on the linearized analysis of the non‐isentropic Navier–Stokes–Poisson equations and the electromagnetic part for the linearized isentropic Navier–Stokes–Maxwell equations. In the meantime, the time‐decay rates obtained by Zhang, Li, and Zhu [J. Differential Equations, 250(2011), 866‐891] for the linearized non‐isentropic Navier–Stokes–Poisson equations are improved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we study the asymptotic behavior for the incompressible anisotropic Navier–Stokes equations with the non-slip boundary condition in a half space of ${\mathbb{R}^3}$ when the vertical viscosity goes to zero. Firstly, by multi-scale analysis, we formally deduce an asymptotic expansion of the solution to the problem with respect to the vertical viscosity, which shows that the boundary layer appears in the tangential velocity field and satisfies a nonlinear parabolic–elliptic coupled system. Also from the expansion, it is observed that away from the boundary the solution of the anisotropic Navier–Stokes equations formally converges to a solution of a degenerate incompressible Navier–Stokes equation. Secondly, we study the well-posedness of the problems for the boundary layer equations and then rigorously justify the asymptotic expansion by using the energy method. We obtain the convergence results of the vanishing vertical viscosity limit, that is, the solution to the incompressible anisotropic Navier–Stokes equations tends to the solution to degenerate incompressible Navier–Stokes equations away from the boundary, while near the boundary, it tends to the boundary layer profile, in both the energy space and the L space.  相似文献   

15.
PDE‐constrained optimization problems arise in many physical applications, prominently in incompressible fluid dynamics. In recent research, efficient solvers for optimization problems governed by the Stokes and Navier–Stokes equations have been developed, which are mostly designed for distributed control. Our work closes a gap by showing the effectiveness of an appropriately modified preconditioner to the case of Stokes boundary control. We also discuss the applicability of an analogous preconditioner for Navier–Stokes boundary control and provide some numerical results.  相似文献   

16.
Recently, a new approach for the stabilization of the incompressible Navier–Stokes equations for high Reynolds numbers was introduced based on the nonlinear differential filtering of solutions on every time step of a discrete scheme. In this article, the stabilization is shown to be equivalent to a certain eddy‐viscosity model in Large Eddy Simulation. This allows a refined analysis and further understanding of desired filter properties. We also consider the application of the filtering in a projection (pressure correction) method, the standard splitting algorithm for time integration of the incompressible fluid equations. The article proves an estimate on the convergence of the filtered numerical solution to the corresponding Navier‐Stokes solution. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

17.
This article focuses on discontinuous Galerkin method for the two‐ or three‐dimensional stationary incompressible Navier‐Stokes equations. The velocity field is approximated by discontinuous locally solenoidal finite element, and the pressure is approximated by the standard conforming finite element. Then, superconvergence of nonconforming finite element approximations is applied by using least‐squares surface fitting for the stationary Navier‐Stokes equations. The method ameliorates the two noticeable disadvantages about the given finite element pair. Finally, the superconvergence result is provided under some regular assumptions. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 421–436, 2007  相似文献   

18.
We study the convergence of two generalized marker‐and‐cell covolume schemes for the incompressible Stokes and Navier–Stokes equations introduced by Cavendish, Hall, Nicolaides, and Porsching. The schemes are defined on unstructured triangular Delaunay meshes and exploit the Delaunay–Voronoi duality. The study is motivated by the fact that the related discrete incompressibility condition allows to obtain a discrete maximum principle for the finite volume solution of an advection–diffusion problem coupled to the flow. The convergence theory uses discrete functional analysis and compactness arguments based on recent results for finite volume discretizations for the biharmonic equation. For both schemes, we prove the strong convergence in L2 for the velocities and the discrete rotations of the velocities for the Stokes and the Navier–Stokes problem. Further, for one of the schemes, we also prove the strong convergence of the pressure in L2. These predictions are confirmed by numerical examples presented in the article. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1397–1424, 2014  相似文献   

19.
We develop and analyze a least‐squares finite element method for the steady state, incompressible Navier–Stokes equations, written as a first‐order system involving vorticity as new dependent variable. In contrast to standard L2 least‐squares methods for this system, our approach utilizes discrete negative norms in the least‐squares functional. This allows us to devise efficient preconditioners for the discrete equations, and to establish optimal error estimates under relaxed regularity assumptions. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 237–256, 1999  相似文献   

20.
In this paper, we study the partial regularity of suitable weak solutions to the incompressible magneto‐hydrodynamic equations in dimension four by borrowing and improving the arguments given by Caffarelli, Kohn, and Nirenberg for incompressible Navier–Stokes equations. The so‐called ε‐regularity criteria are established for suitable weak solutions. As an application, an estimate on Hausdorff dimension of the possible singular points set for a suitable weak solution is given. Finally, we present further information on distribution of the possible singular points if the given initial data decay sufficiently rapidly or are not too singular at the origin, in some sense. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号