首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solution of the equation w(x)utt+[p(x)uxx]xx = 0, 0 < x < L, t > 0, where it is assumed that w and p are positive on the interval[O, L], is approximated by using the method of straight lines.The resulting approximation is a linear system of differentialequations with coefficient matrix S. The matrix S is studiedunder very general boundary conditions which result in a conservativesystem. In all cases the matrix S is either an oscillation matrixor possesses nearly all the properties of an oscillation matrix.  相似文献   

2.
The problem of determining the pair w:={F(x, t);f(t)} of sourceterms in the hyperbolic equation utt = (k(x)ux)x + F(x, t) andin the Neumann boundary condition k(0)ux(0, t) = f(t) from themeasured data µ(x):=u(x, T) and/or (x):=ut(x, t) at thefinal time t = T is formulated. It is proved that both componentsof the Fréchet gradient of the cost functionals J1(w)= ||u(x, t;w) – µ(x)||02 and J2(w) = ||ut(x, T;w)– (x)||02 can be found via the solutions of correspondingadjoint hyperbolic problems. Lipschitz continuity of the gradientis derived. Unicity of the solution and ill-conditionednessof the inverse problem are analysed. The obtained results permitone to construct a monotone iteration process, as well as toprove the existence of a quasi-solution.  相似文献   

3.
In order to present the results of this note, we begin withsome definitions. Consider a differential system [formula] where IR is an open interval, and f(t, x), (t, x)IxRn, is acontinuous vector function with continuous first derivativesfr/xs, r, s=1, 2, ..., n. Let Dxf(t, x), (t, x)IxRn, denote the Jacobi matrix of f(t,x), with respect to the variables x1, ..., xn. Let x(t, t0,x0), tI(t0, x0) denote the maximal solution of the system (1)through the point (t0, x0)IxRn. For two vectors x, yRn, we use the notations x>y and x>>yaccording to the following definitions: [formula] An nxn matrix A=(ars) is called reducible if n2 and there existsa partition [formula] (p1, q1, p+q=n) such that [formula] The matrix A is called irreducible if n=1, or if n2 and A isnot reducible. The system (1) is called strongly monotone if for any t0I, x1,x2Rn [formula] holds for all t>t0 as long as both solutions x(t, t0, xi),i=1, 2, are defined. The system is called cooperative if forall (t, x)IxRn the off-diagonal elements of the nxn matrix Dxf(t,x) are nonnegative. 1991 Mathematics Subject Classification34A30, 34C99.  相似文献   

4.
In this paper we present adaptive procedures for the numericalstudy of positive solutions of the following problem: ut = uxx (x, t) (0, 1) x [0, T), ux(0, t) = 0 t [0, T), ux(1, t) = up(1, t) t [0, T), u(x, 0) = u0(x) x (0, 1), with p > 1. We describe two methods. The first one refinesthe mesh in the region where the solution becomes bigger ina precise way that allows us to recover the blow-up rate andthe blow-up set of the continuous problem. The second one combinesthe ideas used in the first one with moving mesh methods andmoves the last points when necessary. This scheme also recoversthe blow-up rate and set. Finally, we present numerical experimentsto illustrate the behaviour of both methods.  相似文献   

5.
The authors consider the question of recovering the coefficientq from the equation utuxx + q(x)u = fj(x) with homogeneousinitial and boundary conditions. The nonhomogeneous source terms form a basis for L2(0,1).It is proved that a unique determination is possible from datameasurements consisting of either the flux at one end of thebar or the net flux leaving the bar, taken at a single fixedtime for each input source. An algorithm that allows efficientnumerical reconstruction of q(x) from finite data is given.  相似文献   

6.
In this paper we continue our investigation in [5, 7, 8] onmultipeak solutions to the problem –2u+u=Q(x)|u|q–2u, xRN, uH1(RN) (1.1) where = Ni=12/x2i is the Laplace operator in RN, 2 < q < for N = 1, 2, 2 < q < 2N/(N–2) for N3, and Q(x)is a bounded positive continuous function on RN satisfying thefollowing conditions. (Q1) Q has a strict local minimum at some point x0RN, that is,for some > 0 Q(x)>Q(x0) for all 0 < |xx0| < . (Q2) There are constants C, > 0 such that |Q(x)–Q(y)|C|xy| for all |xx0| , |yy0| . Our aim here is to show that corresponding to each strict localminimum point x0 of Q(x) in RN, and for each positive integerk, (1.1) has a positive solution with k-peaks concentratingnear x0, provided is sufficiently small, that is, a solutionwith k-maximum points converging to x0, while vanishing as 0 everywhere else in RN.  相似文献   

7.
Consider an analytic germ f:(Cm, 0)(C, 0) (m3) whose criticallocus is a 2-dimensional complete intersection with an isolatedsingularity (icis). We prove that the homotopy type of the Milnorfiber of f is a bouquet of spheres, provided that the extendedcodimension of the germ f is finite. This result generalizesthe cases when the dimension of the critical locus is zero [8],respectively one [12]. Notice that if the critical locus isnot an icis, then the Milnor fiber, in general, is not homotopicallyequivalent to a wedge of spheres. For example, the Milnor fiberof the germ f:(C4, 0)(C, 0), defined by f(x1, x2, x3, x4) =x1x2x3x4 has the homotopy type of S1xS1xS1. On the other hand,the finiteness of the extended codimension seems to be the rightgeneralization of the isolated singularity condition; see forexample [912, 17, 18]. In the last few years different types of ‘bouquet theorems’have appeared. Some of them deal with germs f:(X, x)(C, 0) wheref defines an isolated singularity. In some cases, similarlyto the Milnor case [8], F has the homotopy type of a bouquetof (dim X–1)-spheres, for example when X is an icis [2],or X is a complete intersection [5]. Moreover, in [13] Siersmaproved that F has a bouquet decomposition FF0Sn...Sn (whereF0 is the complex link of (X, x)), provided that both (X, x)and f have an isolated singularity. Actually, Siersma conjecturedand Tibr proved [16] a more general bouquet theorem for thecase when (X, x) is a stratified space and f defines an isolatedsingularity (in the sense of the stratified spaces). In thiscase FiFi, where the Fi are repeated suspensions of complexlinks of strata of X. (If (X, x) has the ‘Milnor property’,then the result has been proved by Lê; for details see[6].) In our situation, the space-germ (X, x) is smooth, but f hasbig singular locus. Surprisingly, for dim Sing f–1(0)2,the Milnor fiber is again a bouquet (actually, a bouquet ofspheres, maybe of different dimensions). This result is in thespirit of Siersma's paper [12], where dim Sing f–1(0)= 1. In that case, there is only a rather small topologicalobstruction for the Milnor fiber to be homotopically equivalentto a bouquet of spheres (as explained in Corollary 2.4). Inthe present paper, we attack the dim Sing f–1(0) = 2 case.In our investigation some results of Zaharia are crucial [17,18].  相似文献   

8.
Irregularities of Point Distribution Relative to Convex Polygons III   总被引:1,自引:0,他引:1  
Suppose that P is a distribution of N points in the unit squareU=[0, 1]2. For every x=(x1, x2)U, let B(x)=[0, x1]x[0, x2] denotethe aligned rectangle containing all points y=(y1, y2)U satisfying0y1x1 and 0y2x2. Denote by Z[P; B(x)] the number of points ofP that lie in B(x), and consider the discrepancy function D[P; B(x)]=Z[P; B(x)]–Nµ(B(x)), where µ denotes the usual area measure.  相似文献   

9.
Let H=–+V(x) be a Schrödinger operator on L2(R4),H0=–. Assume that |V(x)|+| V(x)|C x for some>8. Let be the wave operators. It is known that W± extend to bounded operators in Lp(R4)for all 1p, if 0 is neither an eigenvalue nor a resonance ofH. We show that if 0 is an eigenvalue, but not a resonance ofH, then the W± are still bounded in Lp(R4) for all psuch that 4/3<p<4.  相似文献   

10.
We study non-negative solutions of the porous medium equationwith a source and a nonlinear flux boundary condition, ut =(um)xx + up in (0, ), x (0, T); – (um)x (0, t) = uq (0,t) for t (0, T); u (x, 0) = u0 (x) in (0, ), where m > 1,p, q > 0 are parameters. For every fixed m we prove thatthere are two critical curves in the (p, q-plane: (i) the criticalexistence curve, separating the region where every solutionis global from the region where there exist blowing-up solutions,and (ii) the Fujita curve, separating a region of parametersin which all solutions blow up from a region where both globalin time solutions and blowing-up solutions exist. In the caseof blow up we find the blow-up rates, the blow-up sets and theblow-up profiles, showing that there is a phenomenon of asymptoticsimplification. If 2q < p + m the asymptotics are governedby the source term. On the other hand, if 2q > p + m theevolution close to blow up is ruled by the boundary flux. If2q = p + m both terms are of the same order.  相似文献   

11.
One Cubic Diophantine Inequality   总被引:1,自引:0,他引:1  
Suppose that G(x) is a form, or homogeneous polynomial, of odddegree d in s variables, with real coefficients. Schmidt [15]has shown that there exists a positive integer s0(d), whichdepends only on the degree d, so that if s s0(d), then thereis an x Zs\{0} satisfying the inequality |G(x)|<1. (1) In other words, if there are enough variables, in terms of thedegree only, then there is a nontrivial solution to (1). Lets0(d) be the minimum integer with the above property. In thecourse of proving this important result, Schmidt did not explicitlygive upper bounds for s0(d). His methods do indicate how todo so, although not very efficiently. However, in fact muchearlier, Pitman [13] provided explicit bounds in the case whenG is a cubic. We consider a general cubic form F(x) with realcoefficients, in s variables, and look at the inequality |F(x)|<1. (2) Specifically, Pitman showed that if s(1314)256–1, (3) then inequality (2) is non-trivially soluble in integers. Wepresent the following improvement of this bound.  相似文献   

12.
For an l x k matrix A = (aij) of integers, denote by L(A) thesystem of homogenous linear equations ai1x1 + ... + aikxk =0, 1 i l. We say that A is density regular if every subsetof N with positive density, contains a solution to L(A). Fora density regular l x k matrix A, an integer r and a set ofintegers F, we write if for any partition F = F1 ... Fr there exists i {1, 2,..., r} and a column vector x such that Ax = 0 and all entriesof x belong to Fi. Let [n]N be a random N-element subset of{1, 2, ..., n} chosen uniformly from among all such subsets.In this paper we determine for every density regular matrixA a parameter = (A) such that limn P([n]N (A)r)=0 if N =O(n) and 1 if N = (n). 1991 Mathematics Subject Classification:05D10, 11B25, 60C05  相似文献   

13.
We consider the Dipper–James q-Schur algebra Sq(n, r)k,defined over a field k and with parameter q 0. An understandingof the representation theory of this algebra is of considerableinterest in the representation theory of finite groups of Lietype and quantum groups; see, for example, [6] and [11]. Itis known that Sq(n, r)k is a semisimple algebra if q is nota root of unity. Much more interesting is the case when Sq(n,r)k is not semisimple. Then we have a corresponding decompositionmatrix which records the multiplicities of the simple modulesin certain ‘standard modules’ (or ‘Weyl modules’).A major unsolved problem is the explicit determination of thesedecomposition matrices.  相似文献   

14.
In this paper we study sequence spaces that arise from the conceptof strong weighted mean summability. Let q = (qn) be a sequenceof positive terms and set Qn = nk=1qk. Then the weighted meanmatrix Mq = (ank) is defined by if kn, ank=0 if k>n. It is well known that Mq defines a regular summability methodif and only if Qn. Passing to strong summability, we let 0<p<.Then , are the spaces of all sequences that are strongly Mq-summablewith index p to 0, strongly Mq-summable with index p and stronglyMq-bounded with index p, respectively. The most important specialcase is obtained by taking Mq = C1, the Cesàro matrix,which leads to the familiar sequence spaces w0(p), w(p) and w(p), respectively, see [4, 21]. We remark that strong summabilitywas first studied by Hardy and Littlewood [8] in 1913 when theyapplied strong Cesàro summability of index 1 and 2 toFourier series; orthogonal series have remained the main areaof application for strong summability. See [32, 6] for furtherreferences. When we abstract from the needs of summability theory certainfeatures of the above sequence spaces become irrelevant; forinstance, the qk simply constitute a diagonal transform. Hence,from a sequence space theoretic point of view we are led tostudy the spaces  相似文献   

15.
** Email: brandts{at}science.uva.nl The least-squares mixed finite-element method for second-orderelliptic problems yields an approximation uh Vh H01() of thepotential u together with an approximation ph h H(div ; )of the vector field p = – Au. Comparing uh with the standardfinite-element approximation of u in Vh, and ph with the mixedfinite-element approximation of p, it turns out that they arehigher-order perturbations of each other. In other words, theyare ‘superclose’. Refined a priori bounds and superconvergenceresults can now be proved. Also, the local mass conservationerror is of higher order than could be concluded from the standarda priori analysis.  相似文献   

16.
Let F1, ..., Ft be diagonal forms of degree k with real coefficientsin s variables, and let be a positive real number. The solubilityof the system of inequalities |F1(x)|<,...,|Ft(x)|< in integers x1, ..., xs has been considered by a number of authorsover the last quarter-century, starting with the work of Cook[9] and Pitman [13] on the case t = 2. More recently, Brüdernand Cook [8] have shown that the above system is soluble providedthat s is sufficiently large in terms of k and t and that theforms F1, ..., Ft satisfy certain additional conditions. Whathas not yet been considered is the possibility of allowing theforms F1, ..., Ft to have different degrees. However, with therecent work of Wooley [18,20] on the corresponding problem forequations, the study of such systems has become a feasible prospect.In this paper we take a first step in that direction by studyingthe analogue of the system considered in [18] and [20]. Let1, ..., s and µ1, ..., µs be real numbers such thatfor each i either i or µi is nonzero. We define the forms and consider the solubility of the system of inequalities in rational integers x1, ..., xs. Although the methods developedby Wooley [19] hold some promise for studying more general systems,we do not pursue this in the present paper. We devote most ofour effort to proving the following theorem.  相似文献   

17.
Let > 0. The operator of the form is considered, where the real weight function v(x) is locallyintegrable on R+ := (0, ). In case v(x) = 1 the operator coincideswith the Riemann–Liouville fractional integral, Lp Lqestimates of which with power weights are well known. This workgives Lp Lqboundedness and compactness criteria for the operatorT in the case 0 < p, q < , p > max(1/, 1).  相似文献   

18.
The Schur algebra S(n, r) has a basis (described in [6, 2.3])consisting of certain elements i,j, where i, jI(n, r), the setof all ordered r-tuples of elements from the set n={1, 2, ...,n}. The multiplication of two such basis elements is given bya formula known as Schur's product rule. In recent years, aq-analogue Sq(n, r) of the Schur algebra has been investigatedby a number of authors, particularly Dipper and James [3, 4].The main result of the present paper, Theorem 3.6, shows howto embed the q-Schur algebra in the rth tensor power Tr(Mn)of the nxn matrix ring. This embedding allows products in theq-Schur algebra to be computed in a straightforward manner,and gives a method for generalising results on S(n, r) to Sq(n,r). In particular we shall make use of this embedding in subsequentwork to prove a straightening formula in Sq(n, r) which generalisesthe straightening formula for codeterminants due to Woodcock[12]. We shall be working mainly with three types of algebra: thequantized enveloping algebra U(gln) corresponding to the Liealgebra gln, the q-Schur algebra Sq(n, r), and the Hecke algebra,H(Ar–1). It is often convenient, in the case of the q-Schuralgebra and the Hecke algebra, to introduce a square root ofthe usual parameter q which will be denoted by v, as in [5].This corresponds to the parameter v in U(gln). We shall denotethis ‘extended’ version of the q-Schur algebra bySv(n, r), and we shall usually refer to it as the v-Schur algebra.All three algebras are associative and have multiplicative identities,and the base field will be the field of rational functions,Q(v), unless otherwise stated. The symbols n and r shall bereserved for the integers given in the definitions of thesethree algebras.  相似文献   

19.
Let F = (F1, ..., Fm) be an m-tuple of primitive positive binaryquadratic forms and let UF(x) be the number of integers notexceeding x that can be represented simultaneously by all theforms Fj, j = 1, ... , m. Sharp upper and lower bounds for UF(x)are given uniformly in the discriminants of the quadratic forms. As an application, a problem of Erds is considered. Let V(x)be the number of integers not exceeding x that are representableas a sum of two squareful numbers. Then V(x) = x(log x)–+o(1)with = 1 – 2–1/3 = 0.206....  相似文献   

20.
We study, on the entire space RN(N 1), the diffusive logisticequation utu=uup, u0 (1.1) and its generalizations. Here p > 1 is a constant. Problem(1.1) plays an important role in understanding various populationmodels and some other problems in applied mathematics. When = 1 and p = 2, it is also known as the Fisher equation andKPP equation, due to the pioneering works of Fisher [8] andKolmogoroff, Petrovsky and Piscounoff [18].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号