首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SAPO-34分子筛被广泛应用于甲醇制烯烃(MTO)反应中,目前已实现工业化应用。传统的SAPO-34分子筛在催化过程中容易发生积碳、焦化,导致分子筛失活,单程使用寿命短等问题。纳米级SAPO-34分子筛具有较小晶体尺寸,较高比表面积,减少扩散限制、增强催化剂活性中心和抗积炭能力。在MTO中催化性能相较于传统分子筛更佳。本文从晶种辅助、增加添加剂、双模板剂和优化结晶条件等角度,介绍纳米级SAPO-34的制备方法,进一步研究分析了各不同条件对纳米晶体尺寸的影响,同时对不同纳米尺寸的纳米级SAPO-34在MTO中催化性能进行了探讨。提出了目前研究的问题及未来发展的方向。  相似文献   

2.
碱土金属改性SAPO-34催化甲醇制烯烃   总被引:3,自引:0,他引:3  
用碱士金属(Mg,Ca,Sr和Ba)通过浸渍法对SAPO-34分子筛进行了改性,在常压连续流动固定床反应器上研究了其对甲醇制烯烃(MTO)反应的催化性能.结果表明,0.5%~1%Ba的添加明显提高了SAPO-34的抗积炭失活能力,使催化剂在WHSV=2 h-1和450℃条件下的催化寿命相对延长了27%.  相似文献   

3.
针对SAPO-34在甲醇制烯烃(MTO)催化过程中易于失活的问题,采用水热法合成了具有不同粒径及多级孔SAPO-34。详细研究了铝源、硅源对SAPO-34分子筛晶粒尺度的调控性能及二次模板剂对多级孔SAPO-34合成的影响。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、傅立叶变换红外(FT-IR)、N2吸附-脱附,透射电子显微镜(TEM)以及NH3-TPD等手段对合成的材料进行了表征。结果表明采用不同铝源可以实现对SAPO-34粒径的有效调控,二次模板剂的引入可以在纳米SAPO-34晶粒内部创造出孔壁晶化的晶内介孔结构。在甲醇制烯烃的催化反应过程中,大颗粒SAPO-34具有较高的低碳烯烃的选择性,多级SAPO-34因为纳米化或介孔的引入使得微孔孔道有效缩短,提高了其在MTO催化反应过程中的稳定性,但是对低碳烯烃的选择性受到抑制,而对油品的选择性则因为外表面积的增大而显著增加。  相似文献   

4.
针对SAPO-34在甲醇制烯烃(MTO)催化过程中易于失活的问题,采用水热法合成了具有不同粒径及多级孔SAPO-34。详细研究了铝源、硅源对SAPO-34分子筛晶粒尺度的调控性能及二次模板剂对多级孔SAPO-34合成的影响。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、傅立叶变换红外(FT-IR)、N2吸附-脱附,透射电子显微镜(TEM)以及NH3-TPD等手段对合成的材料进行了表征。结果表明采用不同铝源可以实现对SAPO-34粒径的有效调控,二次模板剂的引入可以在纳米SAPO-34晶粒内部创造出孔壁晶化的晶内介孔结构。在甲醇制烯烃的催化反应过程中,大颗粒SAPO-34具有较高的低碳烯烃的选择性,多级SAPO-34因为纳米化或介孔的引入使得微孔孔道有效缩短,提高了其在MTO催化反应过程中的稳定性,但是对低碳烯烃的选择性受到抑制,而对油品的选择性则因为外表面积的增大而显著增加。  相似文献   

5.
甲醇制烯烃反应(MTO)是天然气或煤替代石油制取烯烃路线的关键过程。SAPO-34分子筛由于具有适宜的孔道结构、酸性及良好的水热稳定性,在MTO反应中展现出优异的催化性能。对SAPO-34分子筛进行改性研究,不仅有助于其催化性能的提升,还可加深对反应机理的认识。本文综述了近年来用于MTO反应的SAPO-34的改性方法、改性原理及效果,如水蒸汽处理、酸中心选择性中毒、引入金属杂原子、ship-in-a-bottle法、硅烷化改性、F-离子改性、高温氮化改性等,并对今后的研究方向进行了展望。  相似文献   

6.
低碳烯烃(乙烯、丙烯)是重要化工材料的基础原料.甲醇制烯烃(MTO)技术是重要的非石油路线制取低碳烯烃技术.SAPO-34分子筛在MTO反应中表现出优异的低碳烯烃选择性,而笼结构尺寸较大的SAPO-18分子筛的MTO反应产物以丙烯为主.乙烯具有比丙烯更高的经济附加值,因此提升SAPO-18分子筛MTO反应中乙烯的选择性有着重要的工业意义.本文采用离子交换法对SAPO-18分子筛进行金属Zn改性,修饰SAPO-18分子筛的笼结构.利用多种手段对Zn改性SAPO-18分子筛的物理结构、金属物种状态及分布、酸性、扩散性质等进行表征,对积碳物种的种类、积炭量等进行分析,从而关联SAPO-18分子筛笼结构的修饰与MTO反应产物选择性的关系.首先,我们对Zn改性SAPO-18分子筛的物理结构进行分析.X射线衍射表明,所采用的SAPO-18为不含杂晶的纯相分子筛.N2物理吸附-脱附表明,离子交换法法保持SAPO-18分子筛比表面积和孔体积.其次,我们考察了Zn改性SAPO-18分子筛中金属物种的状态及分布.X射线光电子能谱(XPS)表明, Zn物种主要以孤立态的Zn2+阳离子形式存在.XPS和X射线荧光结合表明, Zn阳离子改性SAPO-18分子筛表层富Si富Zn,呈类核壳结构.氨气-程序升温脱附与核磁共振氢谱结合表明, Zn改性SAPO-18分子筛酸性位点的酸量降低.继而对Zn改性SAPO-18分子筛的扩散性质进行分析.色谱法和智能重量分析表明, Zn阳离子的引入增加探针分子的扩散限制,从而推断增加MTO反应产物的扩散限制.色质谱联用表明, Zn阳离子的引入促进低甲基苯的生成,利于乙烯产物的生成;同时促进双环芳烃的形成,增加MTO反应产物的扩散限制.热重表明, Zn阳离子改性SAPO-18分子筛以更低的积炭量达到同样的MTO反应催化效果,符合碳原子经济性.Zn阳离子改性有效修饰SAPO-18分子筛的笼结构,表层富Si和Zn,呈现类核壳结构,增加了对MTO反应产物的扩散限制,尤其对分子尺寸较大的反应产物,从而调变MTO反应选择性.因此, Zn阳离子改性有效修饰了SAPO-18分子筛的笼结构,增加乙烯选择性和乙烯/丙烯比,将产物分布以丙烯为主调变为乙烯和丙烯选择性相近.  相似文献   

7.
低碳烯烃(乙烯、丙烯)是化学工业极其重要的基本原料.甲醇制烯烃(MTO)反应是重要的烯烃生产石油替代路线.其中,磷酸硅铝类SAPO-34分子筛在MTO反应中表现出优异的低碳烯烃选择性.与丙烯相比,乙烯具有更高的经济附加值,因此提升MTO反应中乙烯的选择性有着重要的意义.本文采用传统离子交换法(CIE)、模板辅助离子引入法(TII)和醇相离子交换法(AIE)对SAPO-34分子筛进行金属Zn、Cu改性,利用多种表征手段对金属Zn、Cu改性SAPO-34分子筛的物理结构、化学组成、金属物种状态与分布、酸性及扩散性质等进行表征.首先,对金属Zn、Cu改性SAPO-34分子筛的物理结构和化学组成进行分析.X射线衍射表明,相比AIE法,CIE法和TII法改性基本保持SAPO-34分子筛的结晶度.X射线荧光分析表明,相比Co、Ni,金属Zn、Cu更易引入SAPO-34分子筛.N2物理吸附-脱附表明,CIE法改性能够保持SAPO-34分子筛的BET比表面积和微孔孔容.其次,考察了金属Zn、Cu改性SAPO-34分子筛中金属物种的状态.氢气-程序升温还原(H2-TPR)和X射线光电子能谱(XPS)结果表明,Zn物种主要以孤立态的Zn2+阳离子形式存在.H2-TPR、XPS、紫外-可见光谱和电子顺磁共振谱结果表明,Cu物种主要以孤立态的Cu2+阳离子以及部分CuO形式存在.继而对金属Zn、Cu改性SAPO-34分子筛中金属物种的分布进行表征.XPS表明,Zn阳离子改性的SAPO-34表层富硅、富Zn,呈类核壳结构;XPS和扫描式电镜-能量色散X射线光谱结果表明,Cu物种在Cu改性SAPO-34分子筛中均匀分布.进一步研究了金属Zn、Cu改性SAPO-34分子筛中酸性的变化.氨气-程序升温脱附和核磁共振氢谱结果表明,Zn、Cu改性SAPO-34酸性位点的酸量降低.最后,对金属Zn、Cu改性SAPO-34分子筛的扩散性质进行分析.智能重量分析表明,Zn、Cu阳离子的引入降低探针分子(乙烷、丙烷)的扩散系数,推断Zn、Cu阳离子的引入增加对MTO反应产物的扩散限制.热重表明,Zn阳离子改性SAPO-34分子筛反应初期积炭量略微增加.综上所述,Zn阳离子改性SAPO-34催化剂表层富硅、富Zn,呈现类核壳结构.Zn阳离子的引入增加对MTO反应产物的扩散限制,而且Zn阳离子的引入促进MTO反应初始阶段的碳沉积.因此,Zn阳离子改性SAPO-34分子筛显著增加MTO反应产物的扩散限制,对分子尺寸较大的反应产物的扩散限制更为明显,从而提高MTO反应初始阶段的乙烯选择性,增大乙烯/丙烯比.  相似文献   

8.
低碳烯烃(乙烯、丙烯)是化学工业极其重要的基本原料.甲醇制烯烃(MTO)反应是重要的烯烃生产石油替代路线.其中,磷酸硅铝类SAPO-34分子筛在MTO反应中表现出优异的低碳烯烃选择性.与丙烯相比,乙烯具有更高的经济附加值,因此提升MTO反应中乙烯的选择性有着重要的意义.本文采用传统离子交换法(CIE)、模板辅助离子引入法(TII)和醇相离子交换法(AIE)对SAPO-34分子筛进行金属Zn、Cu改性,利用多种表征手段对金属Zn、Cu改性SAPO-34分子筛的物理结构、化学组成、金属物种状态与分布、酸性及扩散性质等进行表征.首先,对金属Zn、Cu改性SAPO-34分子筛的物理结构和化学组成进行分析.X射线衍射表明,相比AIE法,CIE法和TII法改性基本保持SAPO-34分子筛的结晶度.X射线荧光分析表明,相比Co、Ni,金属Zn、Cu更易引入SAPO-34分子筛.N_2物理吸附-脱附表明,CIE法改性能够保持SAPO-34分子筛的BET比表面积和微孔孔容.其次,考察了金属Zn、Cu改性SAPO-34分子筛中金属物种的状态.氢气-程序升温还原(H2-TPR)和X射线光电子能谱(XPS)结果表明,Zn物种主要以孤立态的Zn2+阳离子形式存在.H_2-TPR、XPS、紫外-可见光谱和电子顺磁共振谱结果表明,Cu物种主要以孤立态的Cu~(2+)阳离子以及部分CuO形式存在.继而对金属Zn、Cu改性SAPO-34分子筛中金属物种的分布进行表征.XPS表明,Zn阳离子改性的SAPO-34表层富硅、富Zn,呈类核壳结构;XPS和扫描式电镜-能量色散X射线光谱结果表明,Cu物种在Cu改性SAPO-34分子筛中均匀分布.进一步研究了金属Zn、Cu改性SAPO-34分子筛中酸性的变化.氨气-程序升温脱附和核磁共振氢谱结果表明,Zn、Cu改性SAPO-34酸性位点的酸量降低.最后,对金属Zn、Cu改性SAPO-34分子筛的扩散性质进行分析.智能重量分析表明,Zn、Cu阳离子的引入降低探针分子(乙烷、丙烷)的扩散系数,推断Zn、Cu阳离子的引入增加对MTO反应产物的扩散限制.热重表明,Zn阳离子改性SAPO-34分子筛反应初期积炭量略微增加.综上所述,Zn阳离子改性SAPO-34催化剂表层富硅、富Zn,呈现类核壳结构.Zn阳离子的引入增加对MTO反应产物的扩散限制,而且Zn阳离子的引入促进MTO反应初始阶段的碳沉积.因此,Zn阳离子改性SAPO-34分子筛显著增加MTO反应产物的扩散限制,对分子尺寸较大的反应产物的扩散限制更为明显,从而提高MTO反应初始阶段的乙烯选择性,增大乙烯/丙烯比  相似文献   

9.
以异丙胺(IPA)为模板剂, 3-哌嗪基丙基甲基二甲氧基硅烷(PZPMS)为助剂, 水热合成出由纳米片组装而成的鸟巢状SAPO-5和纳米晶组装体SAPO-34. 考察了模板剂、 有机硅烷和硅投料量对晶化的影响, 发现合成产品的晶相和形貌随有机硅烷的添加依次变为SAPO-14, SAPO-5和SAPO-5/SAPO-34的混相. 固定PZPMS的量不变, 产物晶相随硅烷投料量的增加从SAPO-5逐渐转变成SAPO-34分子筛. 对合成的特殊形貌SAPO分子筛进行了表征, 并结合对比实验揭示PZPMS与IPA的复配是获得特殊形貌SAPO分子筛的关键. 此外, 所制备的SAPO-34样品由于良好扩散传质性能, 在甲醇制烯烃(MTO)反应中显示了优异的催化性能, 乙烯加丙烯选择性最高可达86.95%.  相似文献   

10.
张琳  田鹏  苏雄  樊栋  王德花  刘中民 《催化学报》2012,(10):1724-1729
采用水热法制备了核壳型SAPO-34/AlPO-18分子筛,并运用X射线衍射、扫描电镜和超高分辨场发射扫描电镜等方法对样品进行了表征.结果表明,通过改变实验条件可有效调控壳层AlPO-18纳米晶在SAPO-34晶体表面的生长,从而得到具有不同生长区域、生长取向及紧密度的核壳型SAPO-34/AlPO-18分子筛.超高分辨场发射扫描电镜结果发现,核相SAPO-34晶体的外表面结构与壳层AlPO-18纳米晶的生长性质紧密相关,从而推测出核相晶体外表面微细结构诱导壳层分子筛生长的晶化机理.  相似文献   

11.
以六亚甲基亚胺为模板剂,采用水热法合成了不同硅含量的磷酸硅铝分子筛SAPO-35,并利用X射线衍射、X射线荧光光谱、扫描电镜、固体核磁、X射线光电子能谱和N2吸附-脱附等方法对样品进行了表征.研究了不同硅含量的SAPO-35分子筛在甲醇转化制烯烃反应中的催化行为,同时对比分析了具有相近硅含量的SAPO-35和SAPO-34分子筛在甲醇转化反应过程中积炭物种随反应时间的演变特征,尝试将分子筛结构和其积炭失活行为进行了关联.  相似文献   

12.
甲醇制低碳烯烃(MTO)技术既可实施石油替代路线,又能解决低碳烯烃不足的问题,因而具有重要意义.在MTO技术中,SAPO-34分子筛因其高水热稳定性、适宜的微孔结构和酸强度而展现了优异的MTO性能.但SAPO-34分子筛孔道较小,易形成积碳物种而覆盖活性中心,导致分子筛催化剂失活快,反应流程复杂.延长SAPO-34催化剂的单程寿命可减少其再生频率,降低能耗并节约成本.在微孔SAPO-34分子筛中引入介孔或大孔孔道来组成多级孔道结构,可大大促进反应物及产物分子在孔道内的扩散,从而降低积碳速率,延长催化剂寿命.目前,文献中主要采用直接合成路线制备多级孔SAPO-34分子筛,该过程所用的二级模板剂价格较贵,且合成步骤复杂.而采用后处理方法,即先合成SAPO-34分子筛母体,再进行酸碱后处理来制备多级孔SAPO-34分子筛是非常有前景的技术路线.本文首先通过水热合成法制备了立方形貌SAPO-34分子筛,再采用不同种类的酸溶液(硝酸、草酸及丁二酸)对其进行后处理,制备了具有良好相对结晶度的多级孔SAPO-34,考察了酸种类对所得多级孔SAPO-34结构及其MTO性能的影响.研究发现,经硝酸和草酸处理后的样品在特定晶面上出现了蝴蝶状孔道,形成了由微孔、介孔(40–50 nm)和大孔(400–500 nm)组成的多级孔分子筛;其比表面积高达876 m~2/g,孔容为0.36 cm~3/g,该多级孔道大幅改善了MTO过程中的分子扩散性能.酸后处理过程并没有影响分子筛的化学环境及酸中心强度,却降低了分子筛的强酸中心数量并增加了弱酸中心数量.在多级孔结构及酸中心的协同作用下,其MTO性能得到了大幅度提升:经硝酸和草酸处理后所得多级孔SAPO-34,其MTO寿命(400℃,1 atm,甲醇空速1 h~(–1))分别由母体的210 min增至360和390 min,低碳烯烃的总选择性由母体的90%提高至92%–94%,并可根据孔道大小调整产物组成,使乙烯选择性在37.4%–51.5%内调变.对比发现,MTO过程中多级孔SAPO-34上的积碳量由母体的15%提高到18%,但积碳速率却由0.071降至0.046 g/min.失活多级孔SAPO-34内的积碳物种主要为较大的分子,其中芘及芘取代物的含量高达73%,而母体SAPO-34中芘及芘取代物的含量则降低至49%.这是因为多级孔SAPO-34内部更大的孔道空间可容纳更多的大分子积碳物种所致.丁二酸处理后的样品未产生多级孔道,却使部分微孔受损且增加了强酸中心数量,导致其更易失活,MTO寿命也降至100 min.选择合适种类的酸溶液进行后处理可控制备多级孔SAPO-34,可大幅改善其MTO性能.  相似文献   

13.
在水热合成体系中,以三乙胺(TEA)和四乙基氢氧化铵(TEAOH)为混合模板剂,考察了在初始凝胶形成过程中铝源的加入方式对合成SAPO-34分子筛及甲醇制烯烃(MTO)催化性能的影响;通过X射线衍射(XRD)、扫描电子显微镜(SEM)、氮气等温吸附脱附(BET)、~(29)Si固体核磁(~(29)Si MAS NMR)、氨气程序升温脱附(NH_3-TPD)等方法对合成产物进行物性表征,并研究了其在甲醇转化制烯烃(MTO)反应中的催化性能。结果表明,随着首先加铝量的增加,粒径有逐渐变小的趋势,且逐渐出现板层状形貌的SAPO-34分子筛;同时,产物分子筛骨架中Si(4Al)配位结构的数量增加,强酸比例在逐渐增大,且酸密度增加;随着强酸比例和酸密度的提高,SAPO-34分子筛在MTO催化反应中的寿命逐渐延长,丙烯选择性逐渐增大而乙烯选择性逐渐减小。  相似文献   

14.
酸处理可控制备多级孔SAPO-34及其甲醇制烯烃性能   总被引:2,自引:0,他引:2  
甲醇制低碳烯烃(MTO)技术既可实施石油替代路线,又能解决低碳烯烃不足的问题,因而具有重要意义.在MTO技术中,SAPO-34分子筛因其高水热稳定性、适宜的微孔结构和酸强度而展现了优异的MTO性能.但SAPO-34分子筛孔道较小,易形成积碳物种而覆盖活性中心,导致分子筛催化剂失活快,反应流程复杂.延长SAPO-34催化剂的单程寿命可减少其再生频率,降低能耗并节约成本.在微孔SAPO-34分子筛中引入介孔或大孔孔道来组成多级孔道结构,可大大促进反应物及产物分子在孔道内的扩散,从而降低积碳速率,延长催化剂寿命.目前,文献中主要采用直接合成路线制备多级孔SAPO-34分子筛,该过程所用的二级模板剂价格较贵,且合成步骤复杂.而采用后处理方法,即先合成SAPO-34分子筛母体,再进行酸碱后处理来制备多级孔SAPO-34分子筛是非常有前景的技术路线.本文首先通过水热合成法制备了立方形貌SAPO-34分子筛,再采用不同种类的酸溶液(硝酸、草酸及丁二酸)对其进行后处理,制备了具有良好相对结晶度的多级孔SAPO-34,考察了酸种类对所得多级孔SAPO-34结构及其MTO性能的影响.研究发现,经硝酸和草酸处理后的样品在特定晶面上出现了蝴蝶状孔道,形成了由微孔、介孔(40–50 nm)和大孔(400–500 nm)组成的多级孔分子筛;其比表面积高达876 m2/g,孔容为0.36 cm3/g,该多级孔道大幅改善了MTO过程中的分子扩散性能.酸后处理过程并没有影响分子筛的化学环境及酸中心强度,却降低了分子筛的强酸中心数量并增加了弱酸中心数量.在多级孔结构及酸中心的协同作用下,其MTO性能得到了大幅度提升:经硝酸和草酸处理后所得多级孔SAPO-34,其MTO寿命(400°C,1 atm,甲醇空速1 h–1)分别由母体的210 min增至360和390 min,低碳烯烃的总选择性由母体的90%提高至92%–94%,并可根据孔道大小调整产物组成,使乙烯选择性在37.4%–51.5%内调变.对比发现,MTO过程中多级孔SAPO-34上的积碳量由母体的15%提高到18%,但积碳速率却由0.071降至0.046 g/min.失活多级孔SAPO-34内的积碳物种主要为较大的分子,其中芘及芘取代物的含量高达73%,而母体SAPO-34中芘及芘取代物的含量则降低至49%.这是因为多级孔SAPO-34内部更大的孔道空间可容纳更多的大分子积碳物种所致.丁二酸处理后的样品未产生多级孔道,却使部分微孔受损且增加了强酸中心数量,导致其更易失活,MTO寿命也降至100 min.选择合适种类的酸溶液进行后处理可控制备多级孔SAPO-34,可大幅改善其MTO性能.  相似文献   

15.
SAPO-34分子筛的合成及甲醇制烯烃催化性能   总被引:1,自引:0,他引:1  
以三乙胺为模版剂,系统研究了合成凝胶中硅含量、磷酸含量以及水含量对SAPO-34分子筛晶化及其MTO催化性能的影响,Si对SAPO-34的形成具有结构导向作用,只有当SiO2/Al2O3 ≥ 0.25时才可以得到纯相SAPO-34分子筛. 然而随着凝胶中Si含量增大,合成样品中出现氧化铝物种,结晶度、比表面积逐渐下降,催化稳定性降低. 进一步研究发现,凝胶P2O5/Al2O3和H2O/Al2O3比对SAPO-34的合成和催化性能也有很大影响. 当P2O5/Al2O3=1.1,H2O/Al2O3=36时,合成样品具有较高的比表面积、较为理想的(P+Si)/Al比和适宜的酸性,单程寿命达到520 min. 在此基础上研究了焙烧条件对SAPO-34分子筛催化性能的影响,结果表明SAPO-34在流动的空气气氛中焙烧8 h得到的样品比焙烧10 h的样品残留了更多的模版剂,且部分残留的模版剂以二烯烃的形式存在,催化寿命明显比焙烧10 h的样品长,达到580 min.  相似文献   

16.
在水热合成体系中,以三乙胺(TEA)和四乙基氢氧化铵(TEAOH)为混合模板剂,考察了在初始凝胶形成过程中铝源的加入方式对合成SAPO-34分子筛及甲醇制烯烃(MTO)催化性能的影响;通过X射线衍射(XRD)、扫描电子显微镜(SEM)、氮气等温吸附脱附(BET)、29Si固体核磁(29Si MAS NMR)、氨气程序升温脱附(NH3-TPD)等方法对合成产物进行物性表征,并研究了其在甲醇转化制烯烃(MTO)反应中的催化性能。结果表明,随着首先加铝量的增加,粒径有逐渐变小的趋势,且逐渐出现板层状形貌的SAPO-34分子筛;同时,产物分子筛骨架中Si(4Al)配位结构的数量增加,强酸比例在逐渐增大,且酸密度增加;随着强酸比例和酸密度的提高,SAPO-34分子筛在MTO催化反应中的寿命逐渐延长,丙烯选择性逐渐增大而乙烯选择性逐渐减小。  相似文献   

17.
以廉价的木糖、蔗糖、淀粉和葡甘聚糖为硬模板剂成功合成出含多级孔道的SAPO-34分子筛,采用XRD、BET、SEM、TEM、ICP和NH3-TPD等手段对催化剂进行了表征,并在固定床上,研究了糖类硬模板剂对SAPO-34分子筛的结构以及MTO性能的影响。结果表明,糖类硬模板剂能够提升SAPO-34分子筛的比表面积、微孔和介孔体积。与常规SAPO-34分子筛相比,多级孔道SAPO-34分子筛的双烯选择性和寿命均高。介孔体积最大、酸量最少、酸性最弱的SAPO-34-z分子筛的寿命最长(130 min),高出常规SAPO-34分子筛(100 min)30%,分子筛寿命从长到短顺序为SAPO-34-z > SAPO-34-h > SAPO-34-d > SAPO-34-m > SAPO-34 > SAPO-34-p。含多级孔道的SAPO-34分子筛的双烯选择性均高于常规SAPO-34分子筛。  相似文献   

18.
分子筛结构的独特性和多样性使其在催化、吸附分离和离子交换等领域有着广泛应用.近年来,纳米分子筛制备和应用受到极大关注.与传统微米分子筛相比,纳米分子筛具有较小的晶粒尺寸、较大的外表面积和较高的表面活性,能显著提高其分离和催化性能.制备纳米晶体的常用方法有过量模板法、空间限定法、晶种法、离子热合成法及微反应器合成法等.目前,已合成出多种拓扑结构的纳米分子筛,包括FAU,MFI,MEL和CHA等.ZSM-22是一种具有TON拓扑结构的一维十元环直孔道分子筛(孔口尺寸为0.45nm×0.55nm),在长链烷烃异构化和烯烃异构化等反应中表现出优异的催化活性.水热合成法是制备ZSM-22分子筛最常用的方法,所得样品晶粒尺寸为2–15μm,但由于ZSM-22分子筛是一种亚稳态结构,为了防止杂晶生成,合成通常是在剧烈搅拌(通常大于400r/min)下进行.目前已有报道在较低转速下合成ZSM-22分子筛,但产物仍为微米晶体;或在微波辅助水热合成条件下合成亚微米ZSM-22分子筛,但晶体尺寸不可调且合成过程需要较高功率的微波反应器.因此,在水热条件下合成纯纳米ZSM-22分子筛仍然是一个巨大挑战.本文在上述研究基础上采用改进的水热合成法成功合成出纳米ZSM-22分子筛,考察了转速﹑硅铝比及乙醇共溶剂对晶粒尺寸的影响,比较了纳米和常规微米ZSM-22分子筛的甲醇转化反应性能.结果表明,采用改进的水热合成法能够在较低转速下合成出纳米ZSM-22分子筛,晶体尺寸在150–800nm范围可调.通过考察转速对晶粒尺寸的影响,发现静态合成条件下无法形成ZSM-22分子筛,表明ZSM-22分子筛合成需要一定的转速.转速在10–50r/min变化时,可以合成出不同晶体尺寸的ZSM-22分子筛,且随转速提高,ZSM-22分子筛晶体尺寸先减小后增大,表明纳米ZSM-22分子筛合成存在最佳转速.另外,配料硅铝比能显著影响ZSM-22分子筛晶体尺寸,随配料硅铝比增加,ZSM-22分子筛晶体尺寸先减小后增大.通过在合成体系中添加乙醇作为共溶剂,考察了有机溶剂对ZSM-22分子筛晶粒尺寸的影响,发现有机溶剂能显著增大ZSM-22的晶体尺寸.将本文合成的纳米和常规微米ZSM-22分子筛用于甲醇转化反应,考察了晶体尺寸对ZSM-22分子筛甲醇转化反应性能的影响.发现与常规微米ZSM-22分子筛相比,纳米ZSM-22分子筛催化剂寿命显著提高,说明晶粒尺寸减小能有效减缓积碳导致的分子筛失活;同时,反应产物中乙烯和芳烃选择性有所提高,这是由于外表面积增大所致.此外,还考察了不同硅铝比ZSM-22分子筛的甲醇转化反应性能.结果表明,分子筛硅铝比会影响催化剂寿命,但晶体尺寸对催化剂寿命影响更大.ZSM-22分子筛硅铝比增大有助于提高低碳烯烃选择性,减少芳烃生成.  相似文献   

19.
陈磊  卢鹏  袁扬扬  徐力  张晓敏  许磊 《催化学报》2016,(8):1381-1388
分子筛结构的独特性和多样性使其在催化、吸附分离和离子交换等领域有着广泛应用.近年来,纳米分子筛制备和应用受到极大关注.与传统微米分子筛相比,纳米分子筛具有较小的晶粒尺寸、较大的外表面积和较高的表面活性,能显著提高其分离和催化性能.制备纳米晶体的常用方法有过量模板法、空间限定法、晶种法、离子热合成法及微反应器合成法等.目前,已合成出多种拓扑结构的纳米分子筛,包括 FAU, MFI, MEL和CHA等. ZSM-22是一种具有 TON拓扑结构的一维十元环直孔道分子筛(孔口尺寸为0.45 nm ×0.55 nm),在长链烷烃异构化和烯烃异构化等反应中表现出优异的催化活性.水热合成法是制备 ZSM-22分子筛最常用的方法,所得样品晶粒尺寸为2–15μm,但由于 ZSM-22分子筛是一种亚稳态结构,为了防止杂晶生成,合成通常是在剧烈搅拌(通常大于400 r/min)下进行.目前已有报道在较低转速下合成 ZSM-22分子筛,但产物仍为微米晶体;或在微波辅助水热合成条件下合成亚微米 ZSM-22分子筛,但晶体尺寸不可调且合成过程需要较高功率的微波反应器.因此,在水热条件下合成纯纳米 ZSM-22分子筛仍然是一个巨大挑战.本文在上述研究基础上采用改进的水热合成法成功合成出纳米 ZSM-22分子筛,考察了转速﹑硅铝比及乙醇共溶剂对晶粒尺寸的影响,比较了纳米和常规微米 ZSM-22分子筛的甲醇转化反应性能.结果表明,采用改进的水热合成法能够在较低转速下合成出纳米 ZSM-22分子筛,晶体尺寸在150–800 nm范围可调.通过考察转速对晶粒尺寸的影响,发现静态合成条件下无法形成 ZSM-22分子筛,表明 ZSM-22分子筛合成需要一定的转速.转速在10–50 r/min变化时,可以合成出不同晶体尺寸的 ZSM-22分子筛,且随转速提高, ZSM-22分子筛晶体尺寸先减小后增大,表明纳米 ZSM-22分子筛合成存在最佳转速.另外,配料硅铝比能显著影响 ZSM-22分子筛晶体尺寸,随配料硅铝比增加, ZSM-22分子筛晶体尺寸先减小后增大.通过在合成体系中添加乙醇作为共溶剂,考察了有机溶剂对 ZSM-22分子筛晶粒尺寸的影响,发现有机溶剂能显著增大 ZSM-22的晶体尺寸.将本文合成的纳米和常规微米 ZSM-22分子筛用于甲醇转化反应,考察了晶体尺寸对 ZSM-22分子筛甲醇转化反应性能的影响.发现与常规微米 ZSM-22分子筛相比,纳米 ZSM-22分子筛催化剂寿命显著提高,说明晶粒尺寸减小能有效减缓积碳导致的分子筛失活;同时,反应产物中乙烯和芳烃选择性有所提高,这是由于外表面积增大所致.此外,还考察了不同硅铝比 ZSM-22分子筛的甲醇转化反应性能.结果表明,分子筛硅铝比会影响催化剂寿命,但晶体尺寸对催化剂寿命影响更大. ZSM-22分子筛硅铝比增大有助于提高低碳烯烃选择性,减少芳烃生成.  相似文献   

20.
甲醇制烯烃(MTO)是典型的自催化过程,包含诱导期反应.在诱导期反应中,甲醇转化生成的烃池物种在分子筛催化剂上积累,形成含有活性中心的烃池,从而进一步促进和加快更多烃池物种的生成.作为MTO反应的活性中间体,研究分子筛上烃池物种及其演变,对于理解MTO反应机理以及C1化学中第一个C–C键的生成具有重要意义.本文采用SAPO-34分子筛催化剂,对较低温度下流化床反应器中MTO诱导期反应进行研究,获得了诱导期反应的数据.通过HF溶解分子筛骨架的方法,检测各阶段存留在SAPO-34分子筛催化剂中的有机物种,分析了分子筛催化剂上烃池物种的积累和演变、烃池的形成以及烃池物种与催化剂失活之间的关系,并结合诱导期反应数据进一步讨论了MTO诱导期反应的动力学.研究发现,与ZSM-5分子筛类似,SAPO-34分子筛上的MTO诱导期反应对温度非常敏感.诱导期证实可分为三个反应阶段:初始反应阶段(最初C–C键生成阶段)、第二阶段(烃池物种的生成和积累阶段)及第三阶段(自催化反应阶段).这表明SAPO-34分子筛上MTO反应中烃池机理的重要性.然而,由于烃池物种和烃池机理的复杂性,在缺乏动力学研究的情况下,很难将诱导期反应三个阶段与反应机理进行明确的关联.因此,我们分别讨论了诱导期反应三个阶段的动力学,并计算了各阶段的表观活化能.动力学研究表明,与ZSM-5不同的是,在SAPO-34上的MTO诱导期反应中,初始反应阶段表观活化能较低,反应进行相对容易;而自催化反应阶段的活化能较高,反应进行相对困难.这主要是SAPO-34与ZSM-5分子筛的结构差异所致.SAPO-34分子筛因具有CHA结构而导致的扩散限制和空间约束,使得在第一阶段初始活性物种的生成和积累相对容易;但是在自催化反应阶段,不具活性的金刚烷类物质开始生成,并随着反应的进行在所有积碳物种所占的比例逐渐升高,导致其在自催化反应阶段(第三阶段)的活化能高于烃池物种的生成和积累阶段(第二阶段).对于HZSM-5催化剂上的MTO诱导期反应,由于MFI结构所产生的扩散限制和空间约束低于CHA结构,在第一阶段初始活性物种的积累相对困难,导致其初始阶段的表观活化能高于SAPO-34催化剂;但是随着反应的进行,活性物种在HZSM-5催化剂上不断积累,导致自催化反应阶段的进行相对比较容易.然而,对于SAPO-34分子筛上MTO诱导期反应,随着反应时间的推移,催化剂上积累的活性物种和非活性物种同时增多,而且由于SAPO-34结构特点而引起的扩散限制,大部分物种均保留在SAPO-34分子筛的笼中.分子筛中活性物种能提高反应活性,相应地,非活性物种则会抑制反应活性.因此,SAPO-34分子筛上甲醇转化诱导期反应活化能反映的是活性物种和非活性物种之间的竞争关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号