首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用“适配体-目标分子-适配体”的“三明治”夹心方式构建液晶生物传感检测三磷酸腺苷(ATP). 将ATP核酸适配体片段作为捕获探针固定在经TEA/DMOAP混合组装膜修饰的玻片基底表面, 当ATP存在时, 裂开的两部分核酸适配体与ATP结合形成双链结构, 有效诱导液晶分子取向发生变化从而引起光学信号的亮度及颜色发生变化, 实现对ATP的检测, 该方法在ATP浓度为10 nmol/L时仍可观测到明显的光学信号变化. 这种“适配体-目标分子-适配体”的“三明治”夹心式液晶生物传感方法具有无需标记, 操作简单等特点, 在快速检测小分子等物质领域中有广泛的应用前景.  相似文献   

2.
光电化学传感器是以光为激发源,光电流或光电压为检测信号,通过电化学、生物识别等手段定量分析待测物与光电流或光电压之间关系的新型技术。其原理是当光照射到光电活性材料时,材料中的电子受到激发,其上面的识别探针捕获目标分析物,引起光电流或光电压变化。当目标物的浓度变化时,光电信号发生相应的变化,两者之间呈现出函数关系,因此,可以通过光电信号变化,来定量测定目标物。在光电化学传感器中,因其激发源(光)与检测信号(电流或电压)的完全分离极大地减少了背景信号的干扰;又因具有响应快速、灵敏度高、设备简单、价格低廉易于微型化等优点,使光电化学传感器在各大领域备受瞩目。本文介绍了光电化学传感器的基本原理、特点、分类及其应用,并对有代表性的研究和发展前景做了总结和评述。  相似文献   

3.
建立了基于纳米金生物条形码和酶切循环放大技术的荧光传感器用于高灵敏、高选择性检测ATP。通过ATP与核酸适体的特异性识别作用,将修饰有大量信号探针的纳米金条形码捕获到磁性微球表面。与释放的信号探针杂交后,分子信标的发卡结构被打开,荧光恢复。结合酶切技术使信号探针循环利用,显著增强荧光信号。在1~30 nmol/L范围内,ATP浓度与荧光信号呈良好的线性关系,检出限为0.5 nmol/L。用于细胞裂解液中ATP的测定,结果与HPLC方法接近。  相似文献   

4.
制作了一种基于光电流检测的分子印迹传感器,并应用于Ni2+测定。此传感器以CdTe量子点为光电材料,将量子点覆盖在导电玻璃表面,并在此层上以光聚合法制作镍-1-(2-吡啶偶氮)-2-萘酚( PAN)分子印迹膜。365 nm紫外光作为激发光源,量子点在光照下生成电子-空穴对,电子与电子受体-抗坏血酸作用形成的光电流作为检测信号,根据“门效应”进行Ni2+检测。实验中对配合物进行了红外表征,对量子点进行了紫外和荧光表征,对洗脱吸附时间和底液中抗坏血酸浓度的用量进行了优化。实验表明Ni2+浓度在5×10-11~5×10-8 mol/L的范围内与光电流大小呈线性关系,检出限达8.3×10-12 mol/L。此传感器具有较好的选择性,已用于水样分析。  相似文献   

5.
以4-羧基苯基卟啉(TCPP)作为配体,金属锆(Zr)作为配位金属,通过水热法合成Zr-MOFs。以Zr-MOFs材料作为光电活性材料构建了阴极光电化学传感器用于检测同型半胱氨酸(Hcy)。当λ > 420 nm的氙灯光源照射Zr-MOFs时,处于价带(VB)上的电子(e-)跃迁至导带(CB),并在价带上产生空穴(h+),从而产生光电流。同型半胱氨酸的加入会阻碍电子的传递,从而造成阴极光电流降低。当目标物浓度为10 ~ 100 nmol·L-1和100 ~ 1000 nmol·L-1时,光电流信号变化值与目标物浓度呈线性关系,且检出限为2.17 nmol·L-1,制备的传感器具有良好的稳定性和选择性。  相似文献   

6.
构建了检测ATP的新型高灵敏电化学传感器,采用扫描电镜、荧光显微镜成像技术、微分脉冲伏安法及电化学阻抗法进行表征。传感器以硅纳米颗粒通过多段DNA链与氧化铝纳米孔膜形成的三明治结构阻碍离子传导,ATP存在下,传感器中的三明治结构被破坏,使离子通道顺畅,通过检测其电流变化值达到检测目标物ATP的目的。硅纳米颗粒的应用提高了检测灵敏度,降低了背景信号;而且仅需极少量的样品即可实现对ATP的检测。结果表明,此传感器对ATP检测的线性范围为0.025~0.900 nmol/L,检出限为13 pmol/L(S/N=3)。当样品中有100倍目标物浓度的共存物质存在时,传感器仍显示出对ATP的高特异性。此传感器构建简单,再生性好,可实现对小鼠血液中痕量ATP的检测,有望应用于临床医学检测、医药工业和环境检测等领域。  相似文献   

7.
光电化学传感器的构建及应用   总被引:1,自引:0,他引:1  
孙兵  艾仕云 《化学进展》2014,26(5):834-845
光电化学分析是基于光电化学过程和化学/生物识别过程建立起来的一种新的分析方法。该方法以光作为激发信号,以光电流作为检测信号,具有灵敏度高、响应快速、设备简单和易微型化等优点,在生物和环境等分析领域受到了广泛关注。电极表面修饰的光电层在吸收光子后被激发,所产生的载流子发生电荷分离和电子迁移,进而产生光电流。通过在光电层上进一步修饰传感识别单元,利用直接氧化还原、分子识别与结合、酶催化等方法所导致的光电流的变化与待测分子之间的数量关系,可实现对目标物的定量分析。因此,光电化学传感器在功能结构上包括光电转换单元和传感识别单元两部分,光电层的材料选择和传感识别策略是光电化学传感器构建的两大关键点。本文在对光电化学传感器基本原理及应用领域总结的基础上,对光电化学传感器的材料选择和传感模式进行了分析和综述。  相似文献   

8.
采用溶胶一凝胶法制备纳米TiO2薄膜电极,提出了一种简便、快速测量化学需氧量(COD)的方法.分别以葡萄糖、邻苯二甲酸氢钾(KHP)为COD检测的标准物,考察了TiO2薄膜的光催化行为,并与传统方法进行比较.实验结果表明,葡萄糖对紫外光几乎没有吸收,在葡萄糖的电解质溶液中,COD与光电流有很好的一元二次关系;KHP对紫外光有吸收,在KHP的电解质溶液中,当COD浓度大于50mg/L时,随着COD浓度的增加,光电流降低.引入了单位光强度引起的电流响应(E)这一变量,该传感器的单位光强度引起的电流响应E与COD值在15.0-300mg/L范围内有很好的一元二次关系,相关系数为0.9999,并且不同样品在薄膜电极上的E呈现很好的线性关系.该传感器对水样的测量结果与传统方法测量结果相吻合.  相似文献   

9.
本文结合分子印迹技术与电化学检测手段,制备了高选择性、高灵敏度和价格低廉的分子印迹电化学传感器,并利用该传感器对食品中的葡萄糖进行定量分析。由于该分子印迹膜为非导电膜,本实验以铁氰化钾-亚铁氰化钾离子作为底液与电极之间的探针并通过铁氰化钾-亚铁氰化钾氧化还原电流信号的变化来对葡萄糖浓度进行间接测定。实验结果表明,在0.01~2μmol/L的范围内,葡萄糖浓度的变化与铁氰化钾-亚铁氰化钾氧化还原电流信号变化呈线性关系,检出限为7.68×10-9 mol/L。该传感器的制备和测量方法简单,可用于实际样品的检测。  相似文献   

10.
电化学传感器已被证实是一种检测细胞释放信号分子的有效方法.纳米材料如碳纳米材料、金属纳米颗粒,以及纳米复合材料等因其独特性质在电化学分析技术方面应用广泛.本文综述了近年来基于纳米材料的电化学传感器用于检测细胞中释放的信号分子的研究进展,并展望了其发展方向.  相似文献   

11.
燕子红  尹学博 《化学教育》2020,41(12):23-26
介绍了化学热力学基础和葡萄糖体内氧化的3个阶段。葡萄糖体内外氧化符合化学热力学原理中的盖斯定律;酶参与和ATP的引入提高了反应活化分子数,实现了常温常压下的葡萄糖体内氧化;葡萄糖体内氧化的多步骤有助于获得最大非体积功,且多步反应可以有效调控能量在体内的释放速度;葡萄糖体内氧化的前2个阶段证明了葡萄糖可以适应不同条件为生物体提供能量,且不同阶段的中间产物也在生命活动起着重要作用。通过延伸讨论揭示了ATP在葡萄糖体内氧化的三重作用,作为能量形式提高反应活化分子数和存储能量,同时ATP还具有催化剂的特点。  相似文献   

12.
余卓立  蔡燕婕 《化学教育》2020,41(10):112-112
介绍了化学热力学基础和葡萄糖体内氧化的3个阶段。葡萄糖体内外氧化符合化学热力学原理中的盖斯定律;酶参与和ATP的引入提高了反应活化分子数,实现了常温常压下的葡萄糖体内氧化;葡萄糖体内氧化的多步骤有助于获得最大非体积功,且多步反应可以有效调控能量在体内的释放速度;葡萄糖体内氧化的前2个阶段证明了葡萄糖可以适应不同条件为生物体提供能量,且不同阶段的中间产物也在生命活动起着重要作用。通过延伸讨论揭示了ATP在葡萄糖体内氧化的三重作用,作为能量形式提高反应活化分子数和存储能量,同时ATP还具有催化剂的特点。  相似文献   

13.
细胞内原位信号放大策略是检测低丰度内源性目标物的有效手段, 但多数信号放大策略依赖于外源性辅助物, 不可避免地改变细胞内微环境, 进而对机体造成一定干扰. 针对此问题, 可利用细胞内源性物质(如金属离子、 核酸、 蛋白酶等)实现原位荧光信号放大, 对不同生物标志物进行荧光成像, 此方法对低丰度靶分子检测及成像具有重要意义. 本文对内源性物质辅助信号放大及细胞内荧光成像相关研究进行了归纳整理, 介绍了内源性核酸、 酶、 蛋白质、 三磷酸腺苷(ATP)和金属离子辅助信号放大策略, 并探讨了其信号放大机理; 总结了内源性物质辅助信号放大探针在低丰度物质检测及成像方面的研究进展; 最后展望了该策略在细胞成像方面的优势及应用前景.  相似文献   

14.
构建了一种可再生型三磷酸腺苷(ATP)适配体计时库仑电化学传感器.将一条短链DNA通过AuS键自组装固定在电极表面, ATP的核酸适配体与该短链DNA杂交而结合在电极表面.带负电的DNA通过静电吸引结合电解液中的六氨合钌(RuHex)阳离子.当传感器和靶分子ATP孵育后,ATP与核酸适配体结合,使适配体链从电极表面解离,电极表面吸附的DNA量减少,结合RuHex的量随之降低.通过计时库仑技术检测RuHex响应信号降低的量 ,可以对ATP进行定量测定.此传感器的电化学响应信号与ATP浓度对数值呈线性关系,线性检测范围为0.001~100 μmol/L,检出限(S/N=3)为0.5 nmol/L.此传感器检测靶分子ATP后,可以通过简单的操作步骤再生,再生5次后的响应信号为初始信号的90%以上.采用此传感器检测大鼠脑透析液中ATP的含量为(19.2±3.7) nmol/L (n=3).  相似文献   

15.
李勇  王栩  解希雷  张建  唐波 《化学学报》2021,79(1):36-44
一氧化碳(CO)是人体内重要的气体信号分子,在多种重要的生理病理代谢活动中起着关键性的调控作用,被认为是具有广泛医学应用前景的药物活性分子.CO生理学效应与其浓度、空间分布密切相关.因此,生物体内特异检测CO以及可控性供给CO对于充分理解并有效利用其生理病理功能具有十分重要的意义.荧光检测和光控释放因其无侵入性、时空可...  相似文献   

16.
闫璐  李晓丹  肖明书  裴昊 《分析化学》2022,50(4):516-524
细胞外三磷酸腺苷(ATP)作为信号分子参与一系列生理过程,其代谢异常与很多疾病(如炎症和感染性疾病等)的发生密切相关.发展胞外ATP的原位检测方法对于阐明相关疾病的发病机理及临床诊断具有重要意义.本研究制备了集成DNA分子机器的微针贴片.此微针贴片具有快速溶胀特性,在水溶液中可实现对ATP原位采样;集成的DNA分子机器...  相似文献   

17.
利用分子动力学模拟方法研究了不同浓度下葡萄糖水溶液的氢键结构和氢键生存周期. 分析了参与i个氢键(分子内、分子间、所有类型)的葡萄糖分子和水分子的百分比分布. 研究发现存在一个特征数N, 参与N个氢键的分子的比例最高, 当iN时, 参与i个氢键的分子的比例随着浓度的增加而减小. 还分析了不同类型氢键(葡萄糖分子内、葡萄糖分子间、水分子间、葡萄糖分子与水分子间、所有类型)的连续和截断自相关函数, 并计算了对应的氢键生存周期.  相似文献   

18.
非标记纳米银探针催化共振散射光谱检测痕量ATP   总被引:1,自引:0,他引:1  
在pH 7.8 Tris-HCl缓冲液中, 三磷酸腺苷(adenosine triphosphate, ATP)的核酸适体(Apt 1)与其互补链(Apt 2)结合生成双链DNA (double-strand DNA, dsDNA). 此dsDNA不能稳定纳米银(AgNP), NaCl可致AgNP聚集, 在500 nm波长处产生一个较强的共振散射峰. 加入ATP后, ATP与dsDNA中的Apt 1结合形成较稳定的发夹结构结合物并释放出可稳定AgNP的Apt 2. 随着ATP浓度(16.5~1650 nmol/L)增加, 生成的Apt 2增加, 被Apt 2稳定的AgNP即AgNP-Apt 2结合物增加, 聚集的AgNP减少, 500 nm处的共振散射值线性减小. 该适配体反应中的AgNP-Apt 2对葡萄糖-铜(II)微粒反应具有较强的催化作用, 其产物氧化亚铜微粒在610 nm处有一较强共振散射峰. 随着ATP浓度增大, 反应液中AgNP-Apt 2增多, 催化作用增强, 610 nm处的共振散射峰增强. ATP浓度在4.95~165 nmol/L范围内与共振散射增大值ΔI610 nm呈线性关系, 检出限为1.8 nmol/L ATP. 据此建立了灵敏度高、选择性好、简便快速检测ATP的共振散射光谱新方法.  相似文献   

19.
基于适配体(t DNA)与目标物的特异性识别,以辣根过氧化物酶(HRP)和单链DNA (ss DNA)修饰的金纳米颗粒(HRP-AuNPs-ssDNA)为电化学信号转导标签,利用酪胺信号放大(TSA)技术构建一种多级信号放大的灵敏检测方法。在优化条件下,三磷酸腺苷(ATP)浓度在10~50μmol/L范围内,电化学响应与目标物浓度呈良好线性,检出限为1.3μmol/L (3σ)。  相似文献   

20.
聚合物是由一种或几种重复单体以共价键连接形成的大分子化合物, 它不仅能够保持单体的性质, 而且由于聚合后单体间的协同作用, 使其表现出独特的性能. 聚合物作为基础材料在荧光检测领域得到广泛应用. 聚合物通过氢键作用、 亲疏水作用及范德华力等分子间相互作用, 实现了对特定目标物的选择性识别; 通过信号转换和放大功能, 可以将分子识别作用转化为荧光信号; 可以作为骨架连接多个识别单元, 通过多价结合作用等提高识别目标物的能力, 或连接不同的功能单元, 构建多功能的分子器件. 本文对聚合物在荧光检测领域的应用进行了概述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号