首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
A generalization of a vector-valued integral arising in the noncommutative (quantum) statistical decision theory is considered.  相似文献   

4.
5.
6.
7.
In this paper, the flip bifurcation and periodic doubling bifurcations of a discrete population model without delay influence is firstly studied and the phenomenon of Feigenbaum’s cascade of periodic doublings is also observed. Secondly, we explored the Neimark–Sacker bifurcation in the delay population model (two-dimension discrete dynamical systems) and the unique stable closed invariant curve which bifurcates from the nontrivial fixed point. Finally, a computer-assisted study for the delay population model is also delved into. Our computer simulation shows that the introduction of delay effect in a nonlinear difference equation derived from the logistic map leads to much richer dynamic behavior, such as stable node → stable focus → an lower-dimensional closed invariant curve (quasi-periodic solution, limit cycle) or/and stable periodic solutions → chaotic attractor by cascading bubbles (the combination of potential period doubling and reverse period-doubling) and the sudden change between two different attractors, etc.  相似文献   

8.
9.
It has been repeatedly noted, but not discussed in detail, that certain so-called “third-order Taylor series approximations” found in the school of the medieval Keralese mathematician M dhava are inaccurate. That is, these formulas, unlike the other series expansions brilliantly developed by M dhava and his followers, do not correspond exactly to the terms of the power series subsequently discovered in Europe, by whose name they are generally known. We discuss a Sanskrit commentary on these rules that suggests a possible derivation explaining this discrepancy, and in the process re-emphasize that the Keralese work on such series was rooted in geometric approximation rather than in analysis per se. © 2001 Elsevier Science (USA).Es ist mehrfach festgestellt bisher aber nicht ausführlich diskutiert worden, daß einige sogenannte Taylor-reihennäherungswerte dritter Ordnung, die in der mittelalterlichen Schule keralesischen M dhava gefunden werden, ungenau sind. Das heißt, diesc Formeln sind den Termen der Potenzreihe, die später in Europa entwickelt wurde und unter dem Namen Taylorreihe bekannt ist, nicht äquivalent, im Gegensatz zu den anderen Entwicklungen von Reihen, die glänzend von M dhava und seinen Nachfolgern entwickelt werden. Wir behandeln einen Sanskritkommentar zu den Regeln, der eine mögliche Herleitung suggeriert, die diese Diskrepanz erklärt. Dabei betonen wir nochmals, daß die keralesische Arbeit über solche Reihen eher in geometrischen Näherungen als in der Analysis an sich ihre Wurzeln hat. © 2001 Elsevier Science (USA).MSC subject classification: 01A32.  相似文献   

10.
We give a corrected definition for the paper [1] mentioned in the title. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
12.
Describing the dynamics of a city is a crucial step to both understanding the human activity in urban environments and to planning and designing cities accordingly. Here, we describe the collective dynamics of New York City (NYC) and surrounding areas as seen through the lens of Twitter usage. In particular, we observe and quantify the patterns that emerge naturally from the hourly activities in different areas of NYC, and discuss how they can be used to understand the urban areas. Using a dataset that includes more than 6 million geolocated Twitter messages we construct a movie of the geographic density of tweets. We observe the diurnal “heartbeat” of the NYC area. The largest scale dynamics are the waking and sleeping cycle and commuting from residential communities to office areas in Manhattan. Hourly dynamics reflect the interplay of commuting, work and leisure, including whether people are preoccupied with other activities or actively using Twitter. Differences between weekday and weekend dynamics point to changes in when people wake and sleep, and engage in social activities. We show that by measuring the average distances to a central location one can quantify the weekly differences and the shift in behavior during weekends. We also identify locations and times of high Twitter activity that occur because of specific activities. These include early morning high levels of traffic as people arrive and wait at air transportation hubs, and on Sunday at the Meadowlands Sports Complex and Statue of Liberty. We analyze the role of particular individuals where they have large impacts on overall Twitter activity. Our analysis points to the opportunity to develop insight into both geographic social dynamics and attention through social media analysis. © 2015 Wiley Periodicals, Inc. Complexity 21: 280–287, 2016  相似文献   

13.
14.
15.
The structure of the one-dimensional steady spherically symmetric rarefaction flow of an ideal (inviscid and non-heat-conducting) gas in the neighbourhood of a reflection point of a “boundary” C-characteristic is investigated in principal order. The “boundary” C-characteristic separates the gas at rest from the flow due to the outward motion of a piston which confines the gas. In the rt plane, where r is the distance from the centre of symmetry and t is the time, the reflection point, which coincides with the point of arrival on the t axis of the boundary characteristic, coincides with the origin of coordinates. The initial velocity of the piston may be zero (for positive acceleration) or finite. When two symmetrical plane pistons advance, the “derived” derivatives of all the flow parameters on the C-characteristic at the origin of coordinates, which in this case lies on the plane of symmetry, are finite. When a cylindrical and spherical piston advance, the derived derivative of the pressure (velocity) of the gas on the C-characteristic at the origin of coordinates becomes minus (plus)-infinity although without intersecting characteristics of the same family [1–4].  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号