首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用硬模板法合成了具有六方排列的平行圆柱形有序孔道介孔α-氧化铁(α-Fe_2O_3),并将其用作锂离子、钠离子电池的负极材料。所制备的介孔α-Fe_2O_3凭借其独特的有序介孔结构,有效缓解电极在充放电过程中的体积效应,提高了电解液浸润性,促进锂/钠离子的转移和传输,从而在锂离子及钠离子电池中均表现出优异的电化学性能。作为锂离子电池负极时,其首圈放电比容量为983.9 mAh·g~(-1)。经过100次循环后,其放电比容量为1 188.0 mAh·g~(-1)。在钠离子电池中,其首圈放电比容量为687.7mAh·g~(-1)。经过50次循环后,仍有316.9 mAh·g~(-1)的放电比容量。  相似文献   

2.
利用葡萄糖作为模板,与Fe~(3+)溶液水热合成、高温煅烧后获得了空心球形的Fe_2O_3。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)及物理吸附仪对其进行物相结构、形貌及多孔性分析。锂离子电池电化学性能测试结果表明,与立方型α-Fe_2O_3相比,空心球状的α-Fe_2O_3负极材料表现出更加优异的循环稳定性和倍率性能。在200 mA g~(-1)电流密度下首次放电比容量为1295 mAh g~(-1),首次库伦效率为81%。在500 mA g~(-1)电流密度下,空心球状α-Fe_2O_3电极首圈比容量高达1249 mAh g~(-1),首次库伦效率达到73%;循环500圈后,容量保持率为84%,库伦效率达98%以上。在1 A g~(-1)、2A g~(-1)大倍率电流密度下,放电比容量分别为1048 mAh g~(-1)、992 mAh g~(-1),容量保持率分别达到90%与85%。因此,空心结构α-Fe_2O_3负极材料不仅可以有效抑制充放电过程中电极的体积膨胀,还可以缩短锂离子的传输路径,提高电极材料的电化学性能。  相似文献   

3.
采用一种简便的无模板溶剂热法合成了尺寸在1μm左右、具有堆叠结构的SnO_2/TiO_2空心微球。合成过程的研究结果表明:SnO_2/TiO_2空心微球在形成过程中经历了空心、被填充、分裂到再次形成空心结构的过程。随后,SnO_2/TiO_2空心微球作为锂离子电池负极材料的电化学性能测试结果表明:SnO_2/TiO_2空心微球在0.1 A·g~(-1)的电流密度下,其首次放电容量达到1 484.9mAh·g~(-1),库伦效率为49.0%。经过600次循环后,其放电容量依然可以达到565.6 mAh·g~(-1),显示了高的容量和循环稳定性。  相似文献   

4.
采用常规的固相反应法结合机械球磨制备了含碳质量分数23.7%的Li_2Ni_2(MoO_4)_3@C复合材料,并应用于锂离子电池负极。与纯Li_2Ni_2(MoO_4)_3相比,Li_2Ni_2(MoO_4)_3@C具有优异的电化学性能,在电流密度为200 mA ·~(-1)时,50周循环后,可逆容量高达845 mAh·g~(-1)。值得注意的是,Li_2Ni_2(MoO_4)_3@C的首周库仑效率高达85%。此外,运用循环伏安法对Li_2Ni_2(MoO_4)_3@C复合物存储锂行为进行了初步探索。  相似文献   

5.
A new SnO_2-Fe_2O_3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO_2 and Fe_2O_3 nanoparticles(NPs) were homogeneously located on the surface of SWCNTs,as confirmed by X-ray diffraction(XRD),transmission electron microscope(TEM) and energy dispersive X-ray spectroscopy(EDX).Due to the synergistic effect of different components,the as synthesized SnO_2-Fe_2O_3/SWCNTs composite as an anode material for lithium-ion batteries exhibited excellent electrochemical performance with a high capacity of 692 mAh·g~(-1) which could be maintained after 50 cycles at 200 mA·g~(-1).Even at a high rate of2000 mA·g~(-1),the capacity was still remained at 656 mAh·g~(-1).  相似文献   

6.
采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li_(1/3)Mn_(2/3)]O2·0.4LiNi_(5/12)Mn_(5/12)Co_(1/6)O_2(简称LNMCO),并使用Zr(CH3COO)4进行ZrO_2的包覆改性。TEM测试结果显示纳米级的ZrO_2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO_2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 m A·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 m Ah·g-1,而原样则为75.1%,224.1 m Ah·g-1,循环100圈之后,1.5%ZrO_2包覆样品的放电比容量为248.3 m Ah·g-1,容量保持率为88.9%,高于原样的195.9 m Ah·g-1和87.4%。  相似文献   

7.
A new SnO_2-Fe_2O_3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO_2 and Fe_2O_3 nanoparticles(NPs) were homogeneously located on the surface of SWCNTs,as confirmed by X-ray diffraction(XRD),transmission electron microscope(TEM) and energy dispersive X-ray spectroscopy(EDX).Due to the synergistic effect of different components,the as synthesized SnO_2-Fe_2O_3/SWCNTs composite as an anode material for lithium-ion batteries exhibited excellent electrochemical performance with a high capacity of 692 mAh·g~(-1) which could be maintained after 50 cycles at 200 mA·g~(-1).Even at a high rate of2000 mA·g~(-1),the capacity was still remained at 656 mAh·g~(-1).  相似文献   

8.
以硝酸铟和蔗糖为原料,依次经水热反应和550℃碳化制得In_2O_3纳米材料(nano-In_2O_3);将硫渗入nanoIn_2O_3得S/In_2O_3,其结构和微观形貌经SEM,TEM和XRD表征。将S/In_2O_3,导电炭黑和聚偏氟乙烯按质量比8∶1∶1制成正极材料(1);将1涂覆于铝箔上,锂片作参比电极,1 mol·L~(-1)LiPF_6的DMF/DOL(V/V=1/1)溶液为电解液,组装成锂硫半电池。采用循环伏安法和恒电流充放电法研究了S/In_2O_3的电化学性能。结果表明:在1.95 V和2.3 V处有两个还原峰,2.5 V处有一个氧化峰。电流密度为335 m A·g~(-1),首次放电比容量为1 357m Ah·g~(-1),库伦效率为82.75%。经80次充放电后,放电比容量为537 m Ah·g~(-1)。  相似文献   

9.
钠具有资源丰富、成本低廉等优势,因此钠离子电池被认为是未来替代锂离子电池的最佳候选者之一。然而,寻找合适的电极材料是当前制备高性能钠离子电池面临的难题之一。在众多候选材料中,钒酸盐材料通过引入阳离子增加钒的配位数,使得材料结构的稳定性得到提高,从而改善了钠离子电池的电化学性能。本文研究了一种原位相分离法合成V_2O_5/Fe_2V_4O_(13)纳米复合材料。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)等对电极材料形貌、组成和结构进行了表征。实验结果显示,V_2O_5/Fe_2V_4O_(13)纳米复合材料相对于V2O5纳米线材料,结构更加稳定,在0.1 A·g~(-1)电流密度下,初始放电容量由295.4 m Ah·g~(-1)提升到342 m Ah·g~(-1),循环100圈容量保持率由26.6%提高到65.8%,获得了更加优异的倍率性能(在1.0 A·g~(-1)电流密度下,容量由44 m Ah·g~(-1)提高到160 m Ah·g~(-1))。因此,V_2O_5/Fe_2V_4O_(13)纳米复合材料的研究为开拓新型高性能钠离子电池负极材料拓宽了思路。  相似文献   

10.
报道了Na_2Ti_3O_7纳米片的原位生长和钠离子电池负极材料的应用。通过简单的腐蚀市售的钛片制备出相互连接的微纳结构的Na_2Ti_3O_7纳米片。此外,腐蚀后的钦片在不用添加导电剂或粘结剂的情况下,可以直接作为电极材料使用。这种电极材料表现出优越的电化学性能,在50 mA·g~(-1)的电流密度下具有175mAh·g~(-1)的可逆容量,在2000mA·g~(-1)的电流密度下循环3000周后,其容量仍保持120 mAh·g~(-1),容量保持率为96.5%。Na_2Ti_3O_7纳米片电极的优越电化学性能归因于二维结构具有较短的离子/电子扩散路径以及无粘结剂结构能有效的增加电极的电子传导能力。结果表明,这种微纳结构能够有效地克服Na_2Ti_3O_7作为电极材料离子/电子导电性差的缺点。因此,这种无粘结剂结构的Na_2Ti_3O_7纳米片负极材料是一种很有潜力的钠离子负极材料。  相似文献   

11.
在水热条件下,以碳球为模板合成了Mn_2O_3空心球,并用作锂硫电池的载硫基底材料。测试结果表明载硫量为51%的Mn_2O_3-S复合材料显示了较高的比容量,良好的循环稳定性和倍率性能。循环100圈后,最终可逆容量仍保持657 m A·g~(-1),证明该Mn_2O_3空心球是一种有潜力的载硫基底材料。  相似文献   

12.
具有两种不同阳离子的二元金属氧化物在钠离子电池中可发生可逆的多电子反应,是一类非常具有应用前景的高容量负极材料。在本项工作中,通过离子交换法和化学剥离法得到HTiNbO_5纳米片,采用水热法将其与蔗糖复合再经由后续热处理得到碳包覆的Ti_2Nb_2O_9纳米片材料。碳包覆的Ti_2Nb_2O_9纳米片可用作钠离子电池的负极材料,具有更高的电子导电性和多的反应活性点以及快速的离子传输通道,在50 m A?g~(-1)的电流密度下具有265.2 m Ah?g~(-1)的可逆容量。在0.5A?g~(-1)的大电流密度下,循环200圈之后比容量为160.9 m Ah?g~(-1) (容量保持率75.3%)。研究结果表明Ti_2Nb_2O_9/C纳米片在钠离子电池中具有出色的充放电性能和循环稳定性,为钠离子电池负极材料提供了可行的新选择。  相似文献   

13.
以聚苯乙烯(PS)胶晶作为铸模,采用纳米铸造工艺及后续煅烧的方法合成了三维有序大孔Fe_2SiO_4/SiO_2@C纳米玻璃陶瓷锂离子电池负极材料。溶胶-凝胶工艺产生的凝胶在650℃氩气氛炉中煅烧后,Fe_2SiO_4纳米晶体从含铁元素的SiO_2基玻璃中结晶析出,形成由Fe_2SiO_4纳米晶体、铁离子(Fe3+)修饰的玻璃态SiO_2和非晶碳组成的三维有序大孔纳米玻璃陶瓷。在50 m A·g~(-1)电流密度下进行充放电时,其放电容量可达450 m Ah·g~(-1)以上,电流密度增加到250 m A·g~(-1)时可逆放电容量仍旧稳定地保持在260 m Ah·g~(-1),而具有同样有序大孔结构和含碳量的非晶态SiO_2@C材料的放电比容量在50 m A·g~(-1)电流密度时仅为15 m Ah·g~(-1)。这些结果表明,Fe_2SiO_4纳米晶体及Fe~(3+)有助于SiO_2基玻璃陶瓷实现可逆储锂过程。  相似文献   

14.
以氧化石墨烯(GO)为基底,Fe(NO_3)_3·9H_2O、异丙醇、甘油为原料,通过溶剂热法和后续热处理过程2步合成了Fe_3O_4@C/rGO复合材料,实现了碳包覆的Fe_3O_4纳米粒子自组装形成的分级结构空心球在氧化石墨烯片上的原位生长。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒流充放电等手段分析了材料的物理化学性能与储锂性能。结果表明,该复合材料在5.0 A·g~(-1)的电流密度下,仍有437.7 mAh·g~(-1)的可逆容量,在1.0 A·g~(-1)下循环200圈后还有587.3 mAh·g~(-1)的放电比容量。这主要归因于还原态氧化石墨烯(rGO)对碳包覆Fe_3O_4分级空心球整体结构稳定性和导电性的提高。  相似文献   

15.
应用简单的高温固相烧结法合成了Ti掺杂改性的Li_2MnO_3材料。电子扫描显微镜、X射线衍射以及X射线光电子能谱分析表明Ti元素取代Mn离子掺入到Li_2MnO_3晶格中,且掺杂能有效地抑制一次颗粒的团聚。电化学阻抗和恒流充放电测试结果表明,在2.0~4.6 V的电压窗口下,掺杂改性的样品Li_2Mn_(0.97)Ti_(0.03)O_3的首圈放电比容量达到209 m Ah·g~(-1),库仑效率为99.5%,循环40圈后容量保持率为94%;当电流密度增大到400 m A·g~(-1)时,掺杂改性的样品仍然可以放出120 m Ah·g~(-1)比容量,远高于同等电流密度下未掺杂的Li_2MnO_3原粉的比容量(52 m Ah·g~(-1))。Ti掺杂可有效地改善Li_2MnO_3的循环稳定性和倍率性能,有利于促进该材料的商业化应用。  相似文献   

16.
通过一步碳化法制备富含氧化钴(CoO)的多孔碳(PC(Co))材料作为氧化锡(SnO_2)的载体。PC(Co)材料具有丰富的多孔结构,能够高效承载SnO_2。不仅如此,PC(Co)材料中的氧化钴能够作用于电化学反应,有效降低LiO_2的生成。但CoO参与反应会消耗大量的锂离子,所以选择添加氟化锂(LiF),在补锂的同时能够增强SEI膜的稳定性。SnO_2-PC(Co)/LiF电极活性物质的负载量高达1.51 mg·cm~(-2)。电化学测试表明,在电流密度为100 mAh·g~(-1)时,SnO_2-PC(Co)/LiF电极首次放电比容量达到1 653.63mAh·g~(-1),活性物质的利用率高达93.14%。循环100次后,放电比容量仍然达到1 070.68 mAh·g~(-1),且库仑效率仍然保持在99.81%。  相似文献   

17.
以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li_(1.0)Na_(0.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能。结果表明,钠的掺杂导致颗粒表面光滑度降低,形成Na_(0.77)Mn O_(2.05)新相。0.05C活化过程中,掺钠样品和未掺钠样品首次放电比容量分别为258.4 m Ah·g~(-1)和215.8 m Ah·g~(-1),库伦效率分别为75.2%和72.8%;2C放电比容量分别为116.3 m Ah·g~(-1)和106.2 m Ah·g~(-1)。研究发现,掺钠可减小首次充放电过程的不可逆容量,提高容量保持率;改善倍率性能与容量恢复特性;降低SEI膜阻抗和电荷转移阻抗;掺钠后样品首次循环就可以基本完成Li_2Mn O_3组分向稳定结构的转化,而未掺杂的样品需要两次循环才能逐步完成该过程;XPS结果表明,掺钠样品中Ni~(2+)、Co~(3+)、Mn~(4+)所占比例明显提高,改善了样品的稳定性和电化学性能;循环200次后的XRD结果表明掺钠与未掺钠材料在脱嵌锂反应中的相变化过程基本一致,良好有序的层状结构遭到破坏是循环过程中容量衰减的主要原因。  相似文献   

18.
采用静电纺丝的方法获得含有机物的纳米纤维CoCl_2/SnCl_4/PVP,通过高温退火去除有机物PVP,氧化SnCl_4和CoCl_2得到孔隙率高、具有单轴中空结构的Co_3O_4/SnO_2一维纳米材料。该复合材料在电流密度为100 mA·g~(-1)进行40次循环测试,首次放电容量与充电容量分别为1937 mAh·g~(-1)和1515 mAh·g~(-1),其容量远高于商业石墨的容量。通过不同电流密度下的倍率性能测试,表明该材料拥有快速充电的功能。  相似文献   

19.
本文利用共沉淀法制备了富锂材料xLi_2MnO_3·(1-x)LiNi_(0.5)Mn_(0.3)Co_(0.2)O_2(0.3≤x≤0.7),并进行了X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM)和恒电流充放电测试。研究了在一定的反应温度下合成出的材料的电化学性能。结果表明,Li_(1.17)Mn_(0.48)Ni_(0.25)Co_(0.1)O_2在0.1 C下的放电比容量为240.3m Ah·g~(-1),其在1 C倍率下100次循环后的比容量为180.6 m Ah·g~(-1),容量保持率为89.4%.  相似文献   

20.
采用静电纺丝技术由不同浓度纺丝液制备了SnO_2-PVP纤维,并分别在氩气和空气中煅烧后获得SnO_2纤维和SnO_2-C纤维。物化性能表征表明所合成的SnO_2纤维及SnO_2-C纤维具有特殊的网格结构,存在较多空隙能有效缓冲SnO_2充放电过程中剧烈的体积变化,因而样品具有比SnO_2纳米颗粒更好的储锂性能。SnO_2-C纤维中含有较多的C具有较好的倍率性能,但放电容量较低。SnO_2纤维具有较高的放电容量,同时具有较好的循环稳定性。在电流密度为0.4、0.8、1.6、2.4和4 A·g-1,10次循环后放电容量分别达到1 372、832、685、642和599 mAh·g~(-1),且当电流密度回落至0.4 A·g-1时放电容量可恢复到1 113 mAh·g-1;另外在电流密度1.6 A·g-1下充放电200次后纤维的放电容量仍可达到613 mAh·g~(-1)、库伦效率接近100%,表现出极好的倍率性能和循环稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号