首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two families \(\mathcal{A}, \mathcal{B}\) of subsets of ω are said to be separated if there is a subset of ω which mod finite contains every member of \(\mathcal{A}\) and is almost disjoint from every member of \(\mathcal{B}\). If \(\mathcal{A}\) and \(\mathcal{B}\) are countable disjoint subsets of an almost disjoint family, then they are separated. Luzin gaps are well-known examples of ω 1-sized subfamilies of an almost disjoint family which can not be separated. An almost disjoint family will be said to be ω 1-separated if any disjoint pair of ≤ω 1-sized subsets are separated. It is known that the proper forcing axiom (PFA) implies that no maximal almost disjoint family is ≤ω 1-separated. We prove that this does not follow from Martin’s Axiom.  相似文献   

2.
We study the principal parts bundles \(\mathcal {P}^{k}\mathcal {O}_{\mathbb {P}^{n}}(d)\) as homogeneous bundles and we describe their associated quiver representations. With this technique we show that if n≥2 and 0≤d<k then there exists an invariant decomposition \(\mathcal {P}^{k}\mathcal {O}_{\mathbb {P}^{n}}(d)=Q_{k,d}\oplus(S^{d}V\otimes \mathcal {O}_{\mathbb {P}^{n}})\) with Q k,d a stable homogeneous vector bundle. The decomposition properties of such bundles were previously known only for n=1 or kd or d<0. Moreover we show that the Taylor truncation maps \(H^{0}\mathcal {P}^{k}\mathcal {O}_{\mathbb {P}^{n}}(d)\to H^{0}\mathcal {P}^{h}\mathcal {O}_{\mathbb {P}^{n}}(d)\), defined for any hk and any d, have maximal rank.  相似文献   

3.
We consider minimal surfaces of general type with p g =2, q=1 and K 2=5. We provide a stratification of the corresponding moduli space \(\mathcal{M}\) and we give some bounds for the number and the dimensions of its irreducible components.  相似文献   

4.
Let A be a commutative ring with unit and HA the set of formal expressions of the type \(f=\sum_{i:0}^{\infty}a_{i}X^{i}\) where a i A. When \(g=\sum_{i:0}^{\infty}b_{i}X^{i}\) then \(f+g=\sum_{i:0}^{\infty}(a_{i}+b_{i})X^{i}\) and \(f*g=\sum_{n:0}^{\infty}c_{n}X^{n}\) with \(c_{n}=\sum_{i:0}^{n}C_{n}^{i}a_{i}b_{n-i}\), where \(C_{n}^{i}={n!\over i!(n-i)!}\). With these two operations HA is a commutative ring with identity. It was introduced and studied by Keigher in 1997. In this note we continue the investigation and we focus on factorization in HA and its sub-ring hA of Hurwitz polynomials. We recall from Benhissi (Contrib. Algebra. Geom. 48(1):251–256, 2007, Proposition 1.1) and Keigher (Commun. Algebra 25(6):1845–1859, 1997, Corollary 2.8) that HA is an integral domain if and only if A is an integral domain with zero characteristic. Let π 0:HA?A be the natural ring homomorphism that assigns to each series its constant term. The key property is that a series fHA is a unit in HA if and only if π 0(f) is a unit in A, Keigher (Commun. Algebra 25(6):1845–1859, 1997, Proposition 2.5).  相似文献   

5.
Each saturated (resp., Arf) numerical semigroup S has the property that each of its fractions \(\frac{S}{k}\) is saturated (resp., Arf), but the property of being of maximal embedding dimension (MED) is not stable under formation of fractions. If S is a numerical semigroup, then S is MED (resp., Arf; resp., saturated) if and only if, for each 2≤k∈?, \(S = \frac{T}{k}\) for infinitely many MED (resp., Arf; resp., saturated) numerical semigroups T. Let \(\mathcal{A}\) (resp., \(\mathcal{F}\)) be the class of Arf numerical semigroups (resp., of numerical semigroups each of whose fractions is of maximal embedding dimension). Then there exists an infinite strictly ascending chain \(\mathcal{A} =\mathcal{C}_{1} \subset\mathcal{C}_{2} \subset\mathcal{C}_{3}\subset \,\cdots\, \subset\mathcal{F}\), where, like \(\mathcal{A}\) and \(\mathcal{F}\), each \(\mathcal{C}_{n}\) is stable under the formation of fractions.  相似文献   

6.
Certain subclasses of the class of Baire one real-valued functions have very nice properties, especially concerning their points of continuity and their preservation of connectedness for many connected sets. A Gibson [weakly Gibson] is defined by the requirement that \(f(\overline{U})\subseteq\overline{f(U)}\) for every open [open connected] set U?? n . It is known that Baire one, Gibson functions are continuous, and that Baire one, weakly Gibson functions have Darboux-like properties in the sense that if U is an open connected set and \(U\subseteq S\subseteq\overline{U}\), then f(S) is an interval. Here we study the situation where the Baire one condition is replaced by honorary Baire two. Distinctly different results are found.  相似文献   

7.
We introduce a new generalization of Alan Day’s doubling construction. For ordered sets \(\mathcal {L}\) and \(\mathcal {K}\) and a subset \(E \subseteq \ \leq _{\mathcal {L}}\) we define the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) arising from inflation of \(\mathcal {L}\) along E by \(\mathcal {K}\). Under the restriction that \(\mathcal {L}\) and \(\mathcal {K}\) are finite lattices, we find those subsets \(E \subseteq \ \leq _{\mathcal {L}}\) such that the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) is a lattice. Finite lattices that can be constructed in this way are classified in terms of their congruence lattices.A finite lattice is binary cut-through codable if and only if there exists a 0?1 spanning chain \(\left \{\theta _{i}\colon 0 \leq i \leq n \right \}\) in \(Con(\mathcal {L})\) such that the cardinality of the largest block of ?? i /?? i?1 is 2 for every i with 1≤in. These are exactly the lattices that can be constructed by inflation from the 1-element lattice using only the 2-element lattice. We investigate the structure of binary cut-through codable lattices and describe an infinite class of lattices that generate binary cut-through codable varieties.  相似文献   

8.
Given a model \(\mathcal {M}\) of set theory, and a nontrivial automorphism j of \(\mathcal {M}\), let \(\mathcal {I}_{\mathrm {fix}}(j)\) be the submodel of \(\mathcal {M}\) whose universe consists of elements m of \(\mathcal {M}\) such that \(j(x)=x\) for every x in the transitive closure of m (where the transitive closure of m is computed within \(\mathcal {M}\)). Here we study the class \(\mathcal {C}\) of structures of the form \(\mathcal {I}_{\mathrm {fix}}(j)\), where the ambient model \(\mathcal {M}\) satisfies a frugal yet robust fragment of \(\mathrm {ZFC}\) known as \(\mathrm {MOST}\), and \(j(m)=m\) whenever m is a finite ordinal in the sense of \(\mathcal {M}.\) Our main achievement is the calculation of the theory of \(\mathcal {C}\) as precisely \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\). The following theorems encapsulate our principal results: Theorem A. Every structure in \(\mathcal {C}\) satisfies \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm { Collection}\). Theorem B. Each of the following three conditions is sufficient for a countable structure \(\mathcal {N}\) to be in \(\mathcal {C}\):(a) \(\mathcal {N}\) is a transitive model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(b) \(\mathcal {N}\) is a recursively saturated model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(c) \(\mathcal {N}\) is a model of \(\mathrm {ZFC}\). Theorem C. Suppose \(\mathcal {M}\) is a countable recursively saturated model of \(\mathrm {ZFC}\) and I is a proper initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is closed under exponentiation and contains \(\omega ^\mathcal {M}\) . There is a group embedding \(j\longmapsto \check{j}\) from \(\mathrm {Aut}(\mathbb {Q})\) into \(\mathrm {Aut}(\mathcal {M})\) such that I is the longest initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is pointwise fixed by \(\check{j}\) for every nontrivial \(j\in \mathrm {Aut}(\mathbb {Q}).\) In Theorem C, \(\mathrm {Aut}(X)\) is the group of automorphisms of the structure X, and \(\mathbb {Q}\) is the ordered set of rationals.  相似文献   

9.
For P ? \(\mathbb{F}_2 \)[z] with P(0) = 1 and deg(P) ≥ 1, let \(\mathcal{A}\) = \(\mathcal{A}\)(P) (cf. [4], [5], [13]) be the unique subset of ? such that Σ n≥0 p(\(\mathcal{A}\), n)z n P(z) (mod 2), where p(\(\mathcal{A}\), n) is the number of partitions of n with parts in \(\mathcal{A}\). Let p be an odd prime and P ? \(\mathbb{F}_2 \)[z] be some irreducible polynomial of order p, i.e., p is the smallest positive integer such that P(z) divides 1 + z p in \(\mathbb{F}_2 \)[z]. In this paper, we prove that if m is an odd positive integer, the elements of \(\mathcal{A}\) = \(\mathcal{A}\)(P) of the form 2 k m are determined by the 2-adic expansion of some root of a polynomial with integer coefficients. This extends a result of F. Ben Saïd and J.-L. Nicolas [6] to all primes p.  相似文献   

10.
Let A be a von Neumann algebra with no central abelian projections. It is proved that if an additive map δ :A → A satisfies δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] +[[a, b], δ(c)] for any a, b, c∈ A with ab = 0(resp. ab = P, where P is a fixed nontrivial projection in A), then there exist an additive derivation d from A into itself and an additive map f :A → ZA vanishing at every second commutator [[a, b], c] with ab = 0(resp.ab = P) such that δ(a) = d(a) + f(a) for any a∈ A.  相似文献   

11.
Let \(\mathcal {A}\) be a Hom-finite additive Krull-Schmidt k-category where k is an algebraically closed field. Let \(\text {mod}\mathcal {A}\) denote the category of locally finite dimensional \(\mathcal {A}\)-modules, that is, the category of covariant functors \(\mathcal {A} \to \text {mod}k\). We prove that an irreducible monomorphism in \(\text {mod}\mathcal {A}\) has a finitely generated cokernel, and that an irreducible epimorphism in \(\text {mod}\mathcal {A}\) has a finitely co-generated kernel. Using this, we get that an almost split sequence in \(\text {mod}\mathcal {A}\) has to start with a finitely co-presented module and end with a finitely presented one. Finally, we apply our results to the study of rep(Q), the category of locally finite dimensional representations of a strongly locally finite quiver. We describe all possible shapes of the Auslander-Reiten quiver of rep(Q).  相似文献   

12.
Let \(\mathcal{U}\) be the class of all unipotent monoids and \(\mathcal{B}\) the variety of all bands. We characterize the Malcev product \(\mathcal{U} \circ \mathcal{V}\) where \(\mathcal{V}\) is a subvariety of \(\mathcal{B}\) low in its lattice of subvarieties, \(\mathcal{B}\) itself and the subquasivariety \(\mathcal{S} \circ \mathcal{RB}\), where \(\mathcal{S}\) stands for semilattices and \(\mathcal{RB}\) for rectangular bands, in several ways including by a set of axioms. For members of some of them we describe the structure as well. This succeeds by using the relation \(\widetilde{\mathcal{H}}= \widetilde{\mathcal{L}} \cap \widetilde{\mathcal{R}}\), where \(a\;\,\widetilde{\mathcal{L}}\;\,b\) if and only if a and b have the same idempotent right identities, and \(\widetilde{\mathcal{R}}\) is its dual.We also consider \((\mathcal{U} \circ \mathcal{RB}) \circ \mathcal{S}\) which provides the motivation for this study since \((\mathcal{G} \circ \mathcal{RB}) \circ \mathcal{S}\) coincides with completely regular semigroups, where \(\mathcal{G}\) is the variety of all groups. All this amounts to a generalization of the latter: \(\mathcal{U}\) instead of \(\mathcal{G}\).  相似文献   

13.
Let k be a commutative ring, \(\mathcal {A}\) and \(\mathcal {B}\) – two k-linear categories with an action of a group G. We introduce the notion of a standard G-equivalence from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\), where \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) is the homotopy category of finitely generated projective \(\mathcal {A}\)-complexes. We construct a map from the set of standard G-equivalences to the set of standard equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) and a map from the set of standard G-equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) to the set of standard equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}(\mathcal {B}/G)\) to \(\mathcal {K}_{p}^{\mathrm {b}}(\mathcal {A}/G)\), where \(\mathcal {A}/G\) denotes the orbit category. We investigate the properties of these maps and apply our results to the case where \(\mathcal {A}=\mathcal {B}=R\) is a Frobenius k-algebra and G is the cyclic group generated by its Nakayama automorphism ν. We apply this technique to obtain the generating set of the derived Picard group of a Frobenius Nakayama algebra over an algebraically closed field.  相似文献   

14.
Let \(\mathcal{H}\) be an infinite dimensional complex Hilbert space and \(\mathcal{A}\) be a standard operator algebra on \(\mathcal{H}\) which is closed under the adjoint operation. It is shown that each nonlinear *-Lie-type derivation δ on \(\mathcal{A}\) is a linear *-derivation. Moreover, δ is an inner *-derivation as well.  相似文献   

15.
Let \(\mathcal{A} = \mathbb{F}[x,y]\) be the polynomial algebra on two variables x, y over an algebraically closed field \(\mathbb{F}\) of characteristic zero. Under the Poisson bracket, \(\mathcal{A}\) is equipped with a natural Lie algebra structure. It is proven that the maximal good subspace of \(\mathcal{A}*\) induced from the multiplication of the associative commutative algebra \(\mathcal{A}\) coincides with the maximal good subspace of \(\mathcal{A}*\) induced from the Poisson bracket of the Poisson Lie algebra \(\mathcal{A}\). Based on this, structures of dual Lie bialgebras of the Poisson type are investigated. As by-products, five classes of new infinite-dimensional Lie algebras are obtained.  相似文献   

16.
Let A and B be two factor von Neumann algebras. For A, B ∈ A, define by [A, B]_*= AB-BA~*the skew Lie product of A and B. In this article, it is proved that a bijective map Φ : A → B satisfies Φ([[A, B]_*, C]_*) = [[Φ(A), Φ(B)]_*, Φ(C)]_*for all A, B, C ∈ A if and only if Φ is a linear *-isomorphism, or a conjugate linear *-isomorphism, or the negative of a linear *-isomorphism, or the negative of a conjugate linear *-isomorphism.  相似文献   

17.
For a singular Riemannian foliation \(\mathcal {F}\) on a Riemannian manifold M, a curve is called horizontal if it meets the leaves of \(\mathcal {F}\) perpendicularly. For a singular Riemannian foliation \(\mathcal {F}\) on a unit sphere \(\mathbb {S}^{n}\), we show that if \(\mathcal {F}\) satisfies some properties, then the horizontal diameter of \(\mathbb {S}^{n}\) is \(\pi \), i.e., any two points in \(\mathbb {S}^{n}\) can be connected by a horizontal curve of length \(\le \pi \).  相似文献   

18.
Friedrich Wehrung 《Order》2018,35(1):111-132
A partial lattice P is ideal-projective, with respect to a class \(\mathcal {C}\) of lattices, if for every \(K\in \mathcal {C}\) and every homomorphism φ of partial lattices from P to the ideal lattice of K, there are arbitrarily large choice functions f:PK for φ that are also homomorphisms of partial lattices. This extends the traditional concept of (sharp) transferability of a lattice with respect to \(\mathcal {C}\). We prove the following: (1) A finite lattice P, belonging to a variety \(\mathcal {V}\), is sharply transferable with respect to \(\mathcal {V}\) iff it is projective with respect to \(\mathcal {V}\) and weakly distributive lattice homomorphisms, iff it is ideal-projective with respect to \(\mathcal {V}\), (2) Every finite distributive lattice is sharply transferable with respect to the class \(\mathcal {R}_{\text {mod}}\) of all relatively complemented modular lattices, (3) The gluing D 4 of two squares, the top of one being identified with the bottom of the other one, is sharply transferable with respect to a variety \(\mathcal {V}\) iff \(\mathcal {V}\) is contained in the variety \(\mathcal {M}_{\omega }\) generated by all lattices of length 2, (4) D 4 is projective, but not ideal-projective, with respect to \(\mathcal {R}_{\text {mod}}\) , (5) D 4 is transferable, but not sharply transferable, with respect to the variety \(\mathcal {M}\) of all modular lattices. This solves a 1978 problem of G. Grätzer, (6) We construct a modular lattice whose canonical embedding into its ideal lattice is not pure. This solves a 1974 problem of E. Nelson.  相似文献   

19.
Let \(\mathcal {R}\) be a prime ring, \(\mathcal {Z(R)}\) its center, \(\mathcal {C}\) its extended centroid, \(\mathcal {L}\) a Lie ideal of \(\mathcal {R}, \mathcal {F}\) a generalized skew derivation associated with a skew derivation d and automorphism \(\alpha \). Assume that there exist \(t\ge 1\) and \(m,n\ge 0\) fixed integers such that \( vu = u^m\mathcal {F}(uv)^tu^n\) for all \(u,v \in \mathcal {L}\). Then it is shown that either \(\mathcal {L}\) is central or \(\mathrm{char}(\mathcal {R})=2, \mathcal {R}\subseteq \mathcal {M}_2(\mathcal {C})\), the ring of \(2\times 2\) matrices over \(\mathcal {C}, \mathcal {L}\) is commutative and \(u^2\in \mathcal {Z(R)}\), for all \(u\in \mathcal {L}\). In particular, if \(\mathcal {L}=[\mathcal {R,R}]\), then \(\mathcal {R}\) is commutative.  相似文献   

20.
Let \(\mathcal {F}_{0}=\{f_{i}\}_{i\in \mathbb {I}_{n_{0}}}\) be a finite sequence of vectors in \(\mathbb {C}^{d}\) and let \(\mathbf {a}=(a_{i})_{i\in \mathbb {I}_{k}}\) be a finite sequence of positive numbers, where \(\mathbb {I}_{n}=\{1,\ldots , n\}\) for \(n\in \mathbb {N}\). We consider the completions of \(\mathcal {F}_{0}\) of the form \(\mathcal {F}=(\mathcal {F}_{0},\mathcal {G})\) obtained by appending a sequence \(\mathcal {G}=\{g_{i}\}_{i\in \mathbb {I}_{k}}\) of vectors in \(\mathbb {C}^{d}\) such that ∥g i 2 = a i for \(i\in \mathbb {I}_{k}\), and endow the set of completions with the metric \(d(\mathcal {F},\tilde {\mathcal {F}}) =\max \{ \,\|g_{i}-\tilde {g}_{i}\|: \ i\in \mathbb {I}_{k}\}\) where \(\tilde {\mathcal {F}}=(\mathcal {F}_{0},\,\tilde {\mathcal {G}})\). In this context we show that local minimizers on the set of completions of a convex potential P φ , induced by a strictly convex function φ, are also global minimizers. In case that φ(x) = x 2 then P φ is the so-called frame potential introduced by Benedetto and Fickus, and our work generalizes several well known results for this potential. We show that there is an intimate connection between frame completion problems with prescribed norms and frame operator distance (FOD) problems. We use this connection and our results to settle in the affirmative a generalized version of Strawn’s conjecture on the FOD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号