首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
黄晓佳  王俊德 《分析化学》2006,34(Z1):129-131
以苯、吡啶、尼古丁和普鲁卡因为探测因子,考察了酰胺型、胺型、醚型和酯型4种"包埋"极性官能团的新型键合固定相对碱性化合物在流动相pH值分别为3.0和7.0时的热力学焓变.实验结果表明,新型固定相由于烷基分子链中"嵌入"极性官能团,因此在流动相pH为3.0时温度对碱性溶质的保留影响相互差异较大.在流动相pH为7.0时,根据Van′t Hoff方程计算出4种待测物质从流动相转移到固定相上的ΔH0,从ΔH0的绝对值大小、相关系数以及实际的分离效果可以发现,在分离强碱性物质时,若实验条件一样,则分离效果是酰胺型和胺型>酯型固定相>醚型固定相,但它们均优于传统的固定相.  相似文献   

2.
黄晓佳  王俊德 《分析化学》2006,34(9):127-130
以苯、吡啶、尼古丁和普鲁卡因为探测因子,考察了酰胺型、胺型、醚型和酯型4种“包埋”极性官能团的新型键合固定相对碱性化合物在流动相pH值分别为3.0和7.0时的热力学焓变。实验结果表明,新型固定相由于烷基分子链中“嵌入”极性官能团,因此在流动相pH为3.0时温度对碱性溶质的保留影响相互差异较大。在流动相pH为7.0时,根据Van't Hoff方程计算出4种待测物质从流动相转移到固定相上的△H^0,从△H^0的绝对值大小、相关系数以及实际的分离效果可以发现,在分离强碱性物质时,若实验条件一样,则分离效果是酰胺型和胺型〉酯型固定相〉醚型固定相,但它们均优于传统的固定相。  相似文献   

3.
制备了3种不同键合量的多壁碳纳米管键合硅胶固定相。以芳香族化合物为目标分析物,甲醇-水为流动相,分别考察了其在不同流动相比例、流速、柱温条件下,酸性、中性、碱性化合物的色谱保留行为,并通过计算分离过程中焓变、熵变和吉布斯自由能等热力学参数,探讨了色谱柱的保留机理。结果表明,碳纳米管键合硅胶与未键合的硅胶固定相分离对氨基苯磺酸和尿嘧啶时,因碳纳米管的加入增强了其疏水作用,保留机理与反相色谱柱相似。而分离中性化合物时,因加入的碳纳米管引入π-π作用,增强了对化合物的保留,有效地提高了色谱柱的柱效。碳纳米管的加入使溶质分子在固定相上的保留增强,溶质分子从杂乱无序排列转为有序排列,且溶质分子在不同碳纳米管键合量的色谱柱上的保留并非由单一机理支配,而是由多种作用相互协同的结果,这使碳纳米管键合硅胶固定相在分离和固相萃取领域展现出良好的应用前景。  相似文献   

4.
柱温属于高效液相色谱(HPLC)的可调参数之一,但在实际操作过程中,柱温对溶质保留行为的影响通常被忽略,不作为色谱条件优化参数.本研究分别以甲醇-0.02 mol/L乙酸(30∶70,V/V)及甲醇-0.02 mol/L乙酸(25∶75,V/V)为流动相,讨论了柱温对6种黄酮苷在一种新型色谱固定相-胆固醇键合固定相以及C18键合固定相上分离的影响.结果表明,随着柱温升高,不同于十八烷基键合固定相,黄酮苷在胆固醇键合固定相上的分离效果得到改善,且峰形变好.同时,拟合了25℃~55℃温度范围内的van't Hoff方程,从热力学角度比较了黄酮苷在胆固醇键合固定相和十八烷基键合固定相上的保留机理.结果表明,黄酮苷在两种色谱柱上的van't Hoff方程均具有良好的线性关系(R2 >0.99),且拟合参数相近(△H0<0,△S0<0),表明这些物质在胆固醇键合固定相上的保留机理与在十八烷基键合固定相上相似,以单一的疏水性保留机理为主导,均属于焓驱动过程.本实验证实,在使用胆固醇键合固定相时,柱温可作为一项重要调节参数,参与色谱优化过程,从而使液相色谱从两变量调节方式(流动相种类和流动相比例)变为三变量调节方式(流动相种类、比例和柱温),从而为色谱条件优化提供了更多选择.  相似文献   

5.
研究了某些生物碱在十八烷基膦酸改性锆-镁复合氧化物固定相(C18PZM)上的色谱行为。通过考察流动相参数如甲醇含量、缓冲液pH值和离子强度对生物碱保留的影响,对这类化合物在该固定相上的保留机理进行了探讨。结果表明,在实验色谱条件下,生物碱在C18PZM上表现出反相和阳离子交换的混合保留模式机理。锆-镁基质上化学吸附的十八烷基膦酸和其对流动相中路易斯碱的吸附以及锆羟基本身均有可能是该固定相的离子交换作用位点的来源。高pH值流动相,溶质大部分以分子状态使用形式存在,因此其保留以疏水作用为主。在甲醇-pH 10.1 Tris缓冲液,生物碱的分离取得了满意的结果。与传统的烷基键合硅胶反相固定相相比,C18PZM表现出了更优越的化学稳定性,对于碱性化合物,尤其是具有高pKa值的碱性化合物的分离分析有着广泛的应用前景,有望发展为与硅胶键合固定相互补的一类反相HPLC的固定相。  相似文献   

6.
十二烷基键合氧化锆固定相的制备与性能评价   总被引:3,自引:0,他引:3  
以自制5μm球形氧化锆为基质,制备了十二烷基键合氧化锆HPLC固定相,考察了正烷基取代苯、稠环芳烃、苯胺及吡啶衍生物、苯酚和硝基苯酚异构体等不同性质化合物在固定相上的保留行为,并与十二烷基键合硅胶固定相进行了比较。结果表明:中性和碱性化合物在固定相上主要为反相色谱保留机理;酸性化合物在固定相上以反相色谱保留机理为主,但是氧化锆表面的Lewis酸性中心对溶质也存在一定程度吸附作用,导致色谱峰拖尾。  相似文献   

7.
高效液相苯胺甲基键合硅胶固定相的保留机理研究   总被引:4,自引:0,他引:4  
周蓉  冯钰锜  达世禄 《色谱》2002,20(3):193-196
 制备了 3种不同键合量的苯胺甲基键合硅胶固定相 ,分别在正、反相条件下研究了它们对芳烃及其极性、酸性、碱性取代衍生物的保留和分离选择性 ,探讨了该固定相的保留机理 ,并考察温度对溶质在具有不同键合量的固定相上保留的影响。结果表明 :苯胺甲基键合硅胶固定相对溶质的保留是疏水、π π、偶极 偶极和电荷转移等多种作用的结果 ,在反相模式中 ,疏水作用对溶质的保留起主要作用。  相似文献   

8.
研究了一些芳胺类化合物在1-萘甲膦酸改性氧化锆固定相上的色谱行为。分别考察了流动相中甲醇含量、缓冲液pH值和离子强度等对芳胺类化合物色谱保留的影响,并对这类化合物在该固定相上的保留机理进行了探讨。研究结果表明,芳胺类化合物在该固定相上表现出反相和阳离子交换的混合保留模式。以pH 10.1的Tris-甲醇(60/40,V/V)溶液为流动相,在1-萘甲膦酸改性氧化锆固定相上成功分离了间苯二胺、邻甲苯胺、N-甲苯胺、对硝基苯胺、邻硝基苯胺和α-甲萘胺6种芳胺类化合物。  相似文献   

9.
核苷与碱基的苯胺甲基键合硅胶固定相高效液相色谱分离   总被引:1,自引:0,他引:1  
建立苯胺甲基键合硅胶固定相(PAMS)高效液相色谱分离核苷与碱基的方法;研究流动相有机溶剂浓度、磷酸缓冲液pH值、离子强度对核苷和碱基在该键合固定相上的色谱保留及分离选择性的影响,用磷酸缓冲液(pH=4)为流动相快速分离了部分核苷与碱基。  相似文献   

10.
王晓欢 《分析测试学报》2018,37(12):1425-1430
通过巯基-烯点击化学方法,合成了一种新型双配体苯磺酸混合模式固定相(Ph/BS),通过元素分析和13C固体核磁共振进行表征。根据溶质结构和流动相组成不同,该混合模式固定相可提供反相(RP)、亲水(HILIC)和强阳离子交换(SCX)多种作用模式。反相条件下分离苯同系物,体现了较好的亚甲基选择性。使用小分子核苷和碱基对亲水色谱行为进行了评价;溶质的保留因子随流动相中水相含量的变化呈现典型的U型曲线,说明Ph/BS固定相具有RP/HILIC双重保留机理。胺类化合物在该固定相上的保留体现了RP/SCX混合色谱的特征。另外,应用Ph/BS固定相在SCX模式下高效分离了二甲双胍及其杂质,在RP/SCX模式下同时分离了酸性、中性和碱性药物。结果显示,该混合模式固定相在复杂样品的分离分析方面具有潜在的优势。  相似文献   

11.
The peak shape and retention of some basic probes together with a neutral reference compound were investigated as a function of temperature and flow-rate using a reversed-phase HPLC column at both pH 3.0 and pH 7.0. The retention of bases often showed an anomalous increase with temperature; retention mechanisms are complex as shown by studies of the effect of buffer cation concentration on retention. Considerable improvements in column efficiency for bases may result from operation at elevated temperature. Improvements did not seem attributable either to incidental changes in the retention factor, or (in this particular study where low sample masses were utilised) to the influence of sample load. The optimum flow-rate for highest efficiency is generally lower for basic compounds than neutrals, and due to the steepness of the Van Deemter curves obtained, high flow-rates appear to be particularly detrimental in the chromatography of basic compounds.  相似文献   

12.
Retention factor, column efficiency and asymmetry factor were recorded for nine basic compounds on a number of RP-HPLC columns using phosphate and a variety of (MS-compatible) volatile mobile phase buffers of acid and neutral pH, in order to assess any effects of the buffer on performance. With formic or acetic acid, some phases gave partial or complete solute exclusion effects (reduced or negative k) compared with results using phosphate buffers at low pH. Despite its possible suppression of mass spectrometer sensitivity, trifluoroacetic acid was useful in enhancing retention times of relatively hydrophilic protonated bases, due to ion-pair effects. Peak shape was relatively poor on some pure silica-based ODS phases at pH 7 compared with results at acid pH. At low pH and at pH 7, ammonium and potassium phosphate gave very similar k, but the former may be preferable due to its volatile cation. Improved peak shapes, attributed to superior silanol masking effects, were obtained with ammonium phosphate at pH 7, but not at acid pH. Ammonium acetate gave acceptable peak shape at pH 7, but due to very limited buffer capacity, poor results were obtained for solutes having a pKa close to the mobile phase pH. Due to its instability, ammonium hydrogen carbonate is not a viable alternative buffer at pH 7.  相似文献   

13.
The influence of Joule heating on electroosmotic flow velocity, the retention factor of neutral analytes, and separation efficiency in capillary electrochromatography was investigated theoretically and experimentally. A plot of electrical current against the applied electrical field strength was used to evaluate the Joule heating effect. When the mobile phase concentration of Tris buffer exceeded 5.0 mM in the studied capillary electrochromatography systems using particulate and monolithic columns (with an accompanying power level of heat dissipation higher than 0.35 W/m), the Joule heating effect became clearly noticeable. Theoretical models for describing the variation of electroosmotic flow velocity with increasing applied field strength and the change of retention factors for neutral analytes with electrical field strength at higher Tris buffer concentrations were analyzed to explain consequences of Joule heating in capillary electrochromatography. Qualitative agreement between experimental data and implications of the theoretical model analysis was observed. The decrease of separation efficiency in capillary electrochromatography with macroporous octadecylsilica particles at high buffer concentration can be also attributed to Joule heating mainly via the increased axial diffusion of the analyte molecules and dispersion of solute bands by a nonuniform electroosmotic flow profile over the column cross-section. However, within a moderate temperature range, the contribution of the macroscopic velocity profile in the column arising from radial temperature gradients is insignificant.  相似文献   

14.
The effectiveness of several basic compounds for testing silica‐based stationary phases was reviewed by applying them to recent columns for reversed‐phase HPLC. Most octadecylsilylated (C18) stationary phases, prepared as a base‐deactivated material from high‐purity silica gel with endcapping, provided excellent peak shape and column efficiency for the bases including benzylamine and amitriptyline that once caused problems and were subsequently employed for testing silanol activities. However, a cyclic tertiary amine, dextrometorphan, was eluted as an acceptable peak from only a few columns at neutral pH. Such a more sensitive probe is expected to contribute to further improvement of the stationary phase for reversed‐phase HPLC.  相似文献   

15.
Capillary electrochromatography (CEC) was employed as a rapid and high-efficiency method for the isocratic separation of all 20 important phenylthiohydantoin (PTH) amino acids, the end products of Edman degradation during N-terminal protein sequencing. For this purpose, 75 microm ID fused-silica capillaries were packed with standard 3 microm Hypersil octadecyl silica (ODS) particles using a two-step column fabrication process, which represents a fast, reliable and efficient means of producing long-term stable columns. The influence of solvent composition, pH, type of buffer cation, buffer concentration, and temperature on retention behavior of PTH amino acids was investigated. Same-day and day-to-day reproducibility of the retention times (over a period of two months) were found to be better than 3%. When comparing this new technique with traditional reversed phase-high performance liquid chromatography (RP-HPLC) methods applied in automated protein sequenators, CEC shows essentially shorter separation times and superior resolution.  相似文献   

16.
Three n-octadecylphosphonic acid-modified magnesia-zirconia reversed stationary phases (C18PZM) are prepared via the strong Lewis base interactions between organophosphonate and magnesia-zirconia composite. And two of them are end-capped by using trimethylchlorosilane as end-capping agent in different procedures. Stability studies at extreme high pH conditions (pH 9-12) show that both the non-endcapped and endcapped columns are quite stable at pH 12 mobile phase. The reversed-phase liquid chromatographic behavior of three C18PZM stationary phases are comparatively investigated in detail using a variety of basic compounds as probes. The retention of basic compounds on the three phases is studied over a wide range of pHs. And the possible retention mechanisms of basic compounds on the three stationary phases are discussed. The results show that the basic solutes retain by a hydrophobic and cation-exchange interaction mixed mechanism on three stationary phases when they are operated in eluents at pH values near to the pKa of the Brönsted conjugate acid form of the analyte, suggesting that inherent zirconol groups on ZM are not expected to interact with bases via cation-exchange interaction at lower pH. Nonetheless, the non-endcapped phase differs markedly from the edncapped ones in retention and selectivity of basic solutes using eluents at pH 4.1, implying a complex retention mechanism at this pH. The cation-exchange sites under such conditions are more likely due to the adsorbed Lewis base anionic buffer constituents (acetate) on accessible ZM surface sites than the chemisorbed phosphonate. Although the three phases exhibit very similar chromatographic behavior with eluents at pH 10.1, and show in general satisfactory separation of basic compounds and alkaloids studied, the performance for a specific analyte, however, differs largely from column to column.  相似文献   

17.
The separation of a mixture of neutral, strongly acidic and strongly basic compounds was studied in hydrophilic interaction chromatography using a bare silica phase, and bonded silica phases with diol, zwitterionic, amide and hydrophilic/hydrophobic groups. The mobile phase was acetonitrile–ammonium formate buffer at low pH. Differences in selectivity between these various columns indicate that the stationary phase cannot function merely as an inert support for a water layer into which the solutes partition from the bulk mobile phase. Attempts to fit the retention data to equations which describe either partition or adsorption mechanisms were inconclusive. Ion exchange was a significant contributor to the retention of ionised bases on all columns studied. Van Deemter plots indicated that the efficiency as a function of flow rate varied between the columns, which might be attributable in part to the presence of either monomeric or polymeric bonded phase layers.  相似文献   

18.
The use of silica columns together with non-aqueous ionic eluents provides a stable yet flexible system for the high-performance liquid chromatographic analysis of basic drugs. At constant ionic strength, eluent pH influences retention via ionisation of surface silanols and protonation of basic analytes, pKa values indicating the pH of maximum retention. At constant pH, retention is proportional to the reciprocal of the eluent ionic strength for fully protonated analytes and quaternary ammonium compounds. The addition of water up to 10% (v/v) has little effect on retention if the protonation of the analytes is unaffected. Thus, it is likely that retention is mediated primarily via cation exchange with surface silanols. However, additional factors must play a part with compounds such as morphine which give tailing peaks at acidic or neutral eluent pHs.  相似文献   

19.
The contribution of cation exchange to solute retention for type-B alkylsilica columns (made from high-purity silica) has been examined in terms of the hydrophobic-subtraction (H-S) model of reversed-phase column selectivity. The relative importance of cation exchange in the separation of ionized bases by reversed-phase chromatography (RPC) varies with (a) column acidity (values of the column cation-exchange capacity C), (b) mobile-phase pH and buffer concentration, and (c) the nature of the buffer cation. The effects of each of these separation variables on cation retention were examined. The contribution of cation exchange (and other ionic interactions) to solute retention is represented in the H-S model by properties of the solute (κ') and column (C), respectively. Values of κ' for 87 solutes have been examined as a function of solute molecular structure, and values of C for 167 type-B alkylsilica columns have been related to various column properties: ligand length (e.g., C(8) vs. C(18)) and concentration (μmol/m(2)), pore diameter (nm), and end-capping. These results contribute to a more detailed picture of the retention of cationic solutes in RPC as a function of separation conditions. While previous work suggests that the ionization of type-B alkylsilica columns is generally negligible with mobile-phase pH<7 (as a result of which cation exchange then becomes insignificant), the present study provides evidence for cation exchange (and presumably silanol ionization) at a pH as low as 3 for most columns.  相似文献   

20.
The retention and selectivity of the chromatographic separation of basic (cationic) analytes on a polybutadiene-coated zirconia (PBD-ZrO2) stationary phase have been studied in greater detail than in previous studies. These separations are strongly influenced by the chemistry of the accessible surface of zirconia. In the presence of buffers which contain hard Lewis bases (e.g., phosphate, fluoride, carboxylic acids) zirconia's surface becomes negatively charged due to adsorption of the buffer anion at the hard Lewis acid sites. Consequently, under most conditions (e.g., neutral pH), cationic analytes undergo both hydrophobic and cation-exchange interactions. This mixed-mode retention process generally leads to greater retention factors for cations relative to those on silica-based reversed phases despite the lower surface areas of the zirconia phase, but, more importantly, adsorption of hard Lewis bases can be used to control the chromatographic selectivity for cationic analytes on these zirconia-based stationary phases. In contrast to our prior work, here we show that when mixed-mode retention takes place, both retention and selectivity are easily adjusted by changing the type of hard Lewis base buffer anion, the type of buffer counter-ion (e.g., sodium, potassium, ammonium), the pH, and the ionic strength of the eluent as well as the type and amount of organic modifier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号