首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resonance Raman spectra of the cubic metal-halide complexes having the general formula [M(6)X(8)Y(6)](2)(-) (M = Mo or W; X, Y = Cl, Br, or I) are reported. The three totally symmetric fundamental vibrations of these complexes are identified. The extensive mixing of the symmetry coordinates that compose the symmetric normal modes expected in these systems is not observed. Instead the "group-frequency" approximation is valid. Furthermore, the force constants of both the apical and face-bridging metal-halide bonds are insensitive to the identity of either the metal or the halide. Raman spectra of related complexes with methoxy and benzenethiol groups as ligands are reported along with the structural data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2). Crystal data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2) at -156 degrees C: monoclinic space group P2(1)/c; a = 12.588(3), b = 17.471(5), c = 20.646(2) ?; beta = 118.53(1) degrees, V = 3223.4 ?(3); d(calcd) = 1.664 g cm(-)(3); Z = 2.  相似文献   

2.
A series of heterobimetallic complexes of the type [Fe(III)M(II)L(&mgr;-OAc)(OAc)(H(2)O)](ClO(4)).nH(2)O (2-5) and [{Fe(III)Co(III)L(&mgr;-OAc)(OAc)}(2)(&mgr;-O)](ClO(4))(2).3H(2)O (6) where H(2)L is a tetraaminodiphenol macrocyclic ligand and M(II) = Zn(2), Ni(3), Co(4), and Mn(5) have been synthesized and characterized. The (1)H NMR spectrum of 6 exhibits all the resonances between 1 and 12 ppm. The IR and UV-vis spectra of 2-5 indicate that in all the cases the metal ions have similar coordination environments. A disordered crystal structure determined for 3 reveals the presence of a (&mgr;-acetate)bis(&mgr;-phenoxide)-Ni(II)Fe(III) core, in which the two metal ions have 6-fold coordination geometry and each have two amino nitrogens and two phenolate oxygens as the in-plane donors; aside from the axial bridging acetate, the sixth coordination site of nickel(II) is occupied by the unidentate acetate and that of iron(III) by a water molecule. The crystal structure determination of 6 shows that the two heterobinuclear Co(III)Fe(III) units are bound by an Fe-O-Fe linkage. 6 crystallizes in the orthorhombic space group Ibca with a = 17.577(4) ?, b = 27.282(7) ?, c = 28.647(6) ?, and Z = 8. The two iron(III) centers in 6 are strongly antiferromagnetically coupled, J = -100 cm(-1) (H = -2JS(1).S(2)), whereas the other two S(1) = S(2) = (5)/(2) systems, viz. [Fe(2)(III)(HL)(2)(&mgr;-OH)(2)](ClO(4))(2) (1) and the Fe(III)Mn(II) complex (5), exhibit weak antiferromagnetic exchange coupling with J = -4.5 cm(-1) (1) and -1.8 cm(-1) (5). The Fe(III)Ni(II) (3) and Fe(III)Co(II) (4) systems, however, exhibit weak ferromagnetic behavior with J = 1.7 cm(-1) (3) and 4.2 cm(-1) (4). The iron(III) center in 2-5 exhibits quasi-reversible redox behavior between -0.44 and -0.48 V vs Ag/AgCl associated with reduction to iron(II). The oxidation of cobalt(II) in 4 occurs quasi-reversibly at 0.74 V, while both nickel(II) and manganese(II) in 3 and 5 undergo irreversible oxidation at 0.85 V. The electrochemical reduction of 6 leads to the generation of 4.  相似文献   

3.
The di- and tetranuclear metal sandwich-type silicotungstates of Cs10[(gamma-SiW10O36)2{Zr(H2O)}2(mu-OH)2] x 18 H2O (Zr2, monoclinic, C2/c (No. 15), a = 25.3315(8) A, b = 22.6699(7) A, c = 18.5533(6) A, beta = 123.9000(12) degrees, V = 8843.3(5) A(3), Z = 4), Cs10[(gamma-SiW10O36)2{Hf(H2O)}2(mu-OH)2] x 17 H2O (Hf2, monoclinic, space group C2/c (No. 15), a = 25.3847(16) A, b = 22.6121(14) A, c = 18.8703(11) A, beta = 124.046(3) degrees, V = 8974.9(9) A(3), Z = 4), Cs8[(gamma-SiW10O36)2{Zr(H2O)}4(mu4-O)(mu-OH)6] x 26 H2O (Zr4, tetragonal, P4(1)2(1)2 (No. 92), a = 12.67370(10) A, c = 61.6213(8) A, V = 9897.78(17) A(3), Z = 4), and Cs8[(gamma-SiW10O36)2{Hf(H2O)}4(mu4-O)(mu-OH)6] x 23 H2O (Hf4, tetragonal, P4(1)2(1)2 (No. 92), a = 12.68130(10) A, c = 61.5483(9) A, V = 9897.91(18) A(3), Z = 4) were obtained as single crystals suitable for X-ray crystallographic analyses by the reaction of a dilacunary gamma-Keggin silicotungstate K8[gamma-SiW10O36] with ZrOCl2 x 8 H2O or HfOCl2 x 8 H2O. These dimeric polyoxometalates consisted of two [gamma-SiW10O36](8-) units sandwiching metal-oxygen clusters such as [M2(mu-OH)2](6+) and [M4(mu4-O)(mu-OH)6](8+) (M = Zr or Hf). The dinuclear zirconium and hafnium complexes Zr2 and Hf2 were isostructural. The equatorially placed two metal atoms in Zr2 and Hf2 were linked by two mu-OH ligands and each metal was bound to four oxygen atoms of two [gamma-SiW10O36](8-) units. The tertanuclear zirconium and hafnium complexes Zr4 and Hf4 were isostructural and consisted of the adamantanoid cages with a tetracoordinated oxygen atom in the middle, [M4(mu4-O)(mu-OH)6](8+) (M = Zr or Hf). Each metal atom in Zr4 and Hf4 was linked by three mu-OH ligands and bound to two oxygen atoms of the [gamma-SiW10O36](8-) unit. The tetra-nuclear zirconium and hafnium complexes showed catalytic activity for the intramolecular cyclization of (+)-citronellal to isopulegols without formation of byproducts resulting from etherification and dehydration. A lacunary silicotungstate [gamma-SiW10O34(H2O)2](4-) was inactive, and the isomer ratio of isopulegols in the presence of MOCl2 x 8 H2O (M = Zr or Hf) were much different from that in the presence of tetranuclear complexes, suggesting that the [M4(mu4-O)(mu-OH)6](8+) core incorporated into the POM frameworks acts as an active site for the present cyclization. On the other hand, the reaction hardly proceeded in the presence of dinuclear zirconium and hafnium complexes under the same conditions. The much less activity is possibly explained by the steric repulsion from the POM frameworks in the dinuclear complexes.  相似文献   

4.
Reactions of two new tripodal ligands 1,3,5-tris(1-imidazolyl)benzene (4) and 1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene (5) with metal [Ag(I), Cu(II), Zn(II), Ni(II)] salts lead to the formation of novel two-dimensional (2D) metal-organic frameworks [Ag(2)(4)(2)][p-C(6)H(4)(COO)(2)].H(2)O (6), [Ag(4)]ClO(4) (7), [Cu(4)(2)(H(2)O)(2)](CH(3)COO)(2).2H(2)O (8), [Zn(4)(2)(H(2)O)(2)](NO(3))(2) (9), [Ni(4)(2)(N(3))(2)].2H(2)O (10), and [Ag(5)]ClO(4) (11). All the structures were established by single-crystal X-ray diffraction analysis. Crystal data for 6: monoclinic, C2/c, a = 23.766(3) A, b = 12.0475(10) A, c = 13.5160(13) A, beta = 117.827(3) degrees, Z = 4. For compound 7: orthorhombic, P2(1)2(1)2(1), a = 7.2495(4) A, b = 12.0763(7) A, c = 19.2196(13) A, Z = 4. For compound 8: monoclinic, P2(1)/n, a = 8.2969(5) A, b = 12.2834(5) A, c = 17.4667(12) A, beta = 96.5740(10) degrees, Z = 2. For compound 9: monoclinic, P2(1)/n, a =10.5699(3) A, b = 11.5037(3) A, c = 13.5194(4) A, beta = 110.2779(10) degrees, Z = 2. For compound 10: monoclinic, P2(1)/n, a = 9.8033(3) A, b = 12.1369(5) A, c = 13.5215(5) A, beta = 107.3280(10) degrees, Z = 2. For compound 11: monoclinic C2/c, a = 18.947(2) A, b = 9.7593(10) A, c = 19.761(2) A, beta = 97.967(2) degrees, Z = 8. Both complexes 6 and 7 are noninterpenetrating frameworks based on the (6, 3) nets, and 8, 9 and 10 are based on the (4, 4) nets while complex 11 has a twofold parallel interpenetrated network with 4.8(2) topology. It is interesting that, in complexes 6,7, and 11 with three-coordinated planar silver(I) atoms, each ligand 4 or 5 connects three metal atoms, while in the case of complexes 8, 9, and 10 with six-coordinated octahedral metal atoms, each ligand 4 only links two metal atoms, and another imidazole nitrogen atom of 4 did not participate in the coordination with the metal atoms in these complexes. The results show that the nature of organic ligand and geometric needs of metal atoms have great influence on the structure of metal-organic frameworks.  相似文献   

5.
The mononuclear Re(IV) compound of formula (PPh(4))(2)[ReBr(4)(mal)] (1) was used as a ligand to obtain the heterobimetallic species [ReBr(4)(μ-mal)Co(dmphen)(2)]· MeCN (2), [ReBr(4)(μ-mal)Ni(dmphen)(2)] (3), [ReBr(4)(μ-mal)Mn(dmphen)(2)] (4a), [ReBr(4)(μ-mal)Mn(dmphen)(H(2)O)(2)]·dmphen·MeCN·H(2)O (4b), [ReBr(4)(μ-mal)Cu(phen)(2)]·1/4H(2)O (5) and [ReBr(4)(μ-mal)Cu(bipy)(2)] (6) (mal = malonate dianion, dmphen = 2,9-dimethyl-1,10-phenanthroline, phen = 1,10-phenanthroline and bipy = 2,2'-bipyridine). The structures of 2 and 5 (single-crystal X-ray diffraction) are made up of neutral [ReBr(4)(μ-mal)M(AA)] dinuclear units [AA = dmphen with M = Co (2) and AA = phen with M = Cu (5)] where the metal ions are connected through a malonate ligand which exhibits simultaneously the bidentate [at the Re(IV)] and monodentate [at the M(II)] coordination modes. The carboxylate-malonate group in them adopts the anti-syn conformation with intramolecular ReM separation of 5.098(8) (2) and 4.947(2) ? (5). The magnetic properties of 1-6 were investigated in the temperature range 1.9-295 K. The magnetic behaviour of 1 is the expected for a magnetically isolated Re(IV) complex with a large value of the zero-field splitting (2D ca. -70 cm(-1)) whereas weak antiferromagnetic interactions between Re(IV) and M(II) are observed in the heterobimetallic compounds 2 (J = -0.63 cm(-1)), 3 (J = -1.37 cm(-1)), 4a (J = -1.29 cm(-1)), 5 (J = -1.83 cm(-1)) and 6 (J = -0.26 cm(-1)). Remarkably, 4b behaves as a ferrimagnetic chain with regular alternating Re(IV) and Mn(II) cations (J = -2.64 cm(-1)).  相似文献   

6.
Four rhenium(IV)-M(II) bimetallic complexes of formula [ReCl(4)(mu-ox)M(dmphen)(2)].CH(3)CN with M = Mn (1), Fe (2), Co (3), and Ni (4) (ox = oxalate anion, dmphen = 2,9-dimethyl-1,10-phenanthroline) have been synthesized and the crystal structures of 1 and 3 determined by single-crystal X-ray diffraction. 1 and 3 are isostructural and crystallize in the monoclinic system, space group P2(1)/c, with a = 16.008(4) A, b = 12.729(2) A, c = 18.909(5) A, beta = 112.70(2) degrees, and Z = 4 for 1 and a = 15.998(4) A, b = 12.665(2) A, c = 18.693(5) A, beta = 112.33(2) degrees, and Z = 4, for 3. The structure of 1 and 3 is made up of neutral [ReCl(4)(mu-ox)M(dmphen)(2)] bimetallic units (M = Mn (1), Co (3)) and acetonitrile molecules of crystallization. M(II) and Re(IV) metal ions exhibit distorted octahedral coordination geometries being bridged by a bis(bidentate) oxalato ligand. The magnetic behavior of 1-4 has been investigated over the temperature range 2.0-300 K. A very weak antiferromagnetic coupling between Re(IV) and Mn(II) occurs in 1 (J = -0.1 cm(-)(1)), whereas a significant ferromagnetic interaction between Re(IV) and M(II) is observed in 2-4 [J = +2.8 (2), +5.2 (3), and +5.9 cm(-)(1) (4)].  相似文献   

7.
Yang M  Yu J  Di J  Li J  Chen P  Fang Q  Chen Y  Xu R 《Inorganic chemistry》2006,45(9):3588-3593
Three new open-framework transition-metal borophosphates Na5(H3O){M(II)3[B3O3(OH)]3(PO4)6}.2H2O (M(II) = Mn, Co, Ni) (denoted as MBPO-CJ25) have been synthesized under mild hydrothermal conditions. Single-crystal X-ray diffraction analyses reveal that the three compounds possess isostructural three-dimensional (3D) open frameworks with one-dimensional 12-ring channels along the [001] direction. Notably, the structure can also be viewed as composed of metal phosphate layers [M(II)(PO4)2]4- with Kagomé topology, which are further connected by [B3O7(OH)] triborates, giving rise to a 3D open framework. The guest water molecules locate in the 12-ring channels. Partial Na+ ions reside in the 10-ring side pockets within the wall of the 12-ring channels, and the other Na+ ions and protonated water molecules locate in the 6-ring windows delimited by MO6 and PO4 polyhedra to compensate for the negative charges of the anionic framework. These compounds show a high thermal stability and are stable upon calcinations at ca. 500 degrees C. Ionic conductivities, due to the motion of Na+ ions, are measured for these three compounds. They have similar activation energies of 1.13-1.25 eV and conductivities of 2.7 x 10(-7)-9.9 x 10(-7) S cm(-1) at 300 degrees C. Magnetic measurements reveal that there are very weak antiferromagnetic interactions among the metal centers of the three compounds. Crystal data: MnBPO-CJ25, hexagonal, P6(3)/m (No. 176), a = 11.9683(5) A, c = 12.1303(6) A, and Z = 2; CoBPO-CJ25, hexagonal, P6(3)/m (No. 176), a = 11.7691(15) A, c = 12.112(2) A, and Z = 2; NiBPO-CJ25, hexagonal, P6(3)/m (No. 176), a = 11.7171(5) A, c = 12.0759(7) A, and Z = 2.  相似文献   

8.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

9.
Two mononuclear copper(II) complexes with the unsymmetrical tridentate ligand 2-[((imidazol-2-ylmethylidene)amino)ethyl]pyridine (HL), [Cu(HL)(H2O)](ClO4)2.2H2O (1) and [Cu(HL)Cl2] (2), have been prepared and characterized. The X-ray analysis of 2 revealed that the copper(II) ion assumes a pentacoordinated square pyramidal geometry with an N3Cl2 donor set. When 1 and 2 are treated with an equimolecular amount of potassium hydroxide, the deprotonation of the imidazole moiety promotes a self-assembled process, by coordination of the imidazolate nitrogen atom to a Cu(II) center of an adjacent unit, leading to the polynuclear complexes [[Cu(L)(H2O)](ClO4)]n (3) and [[Cu(L)Cl].2H2O]n (4). Variable-temperature magnetic data are well reproduced for one-dimensional infinite regular chain systems with J = -60.3 cm(-1) and g = 2.02 for 3 and J = -69.5 cm(-1) and g = 2.06, for 4. When 1 is used as a "ligand complex" for [M(hfac)2] (M = Cu(II), Ni(II), Mn(II), Zn(II)) in a basic medium, only the imidazolate-bridged trinuclear complexes [Cu(L)(hfac)M(hfac)2Cu(hfac)(L)] (M = Zn(II), Cu(II)) (5, 6) can be isolated. Nevertheless, the analogous complex containing Mn(II) as the central metal (7) can be prepared from the precursor [Cu(HL)Cl2] (2). All the trinuclear complexes are isostructural. The structures of 5 and 6 have been solved by X-ray crystallographic methods and consist of well-isolated molecules with Ci symmetry, the center of symmetry being located at the central metal. Thus, the copper(II) fragments are in trans positions, leading to a linear conformation. The magnetic susceptibility data (2-300 K), which reveal the occurrence of antiferromagnetic interactions between copper(II) ions and the central metal, were quantitatively analyzed for symmetrical three-spin systems to give the coupling parameters JCuCu = -37.2 and JCuMn = -3.7 cm(-1) with D = +/-0.4 cm(-1) for 6 and 7, respectively. These magnetic behaviors are compared with those for analogous systems and discussed on the basis of a localized-orbital model of exchange interactions.  相似文献   

10.
A series of homodinuclear platinum(II) complexes containing bridging chalcogenido ligands, [Pt(2)(mu-E)(2)(P empty set N)(4)] (P empty set N=dppy, E=S (1), Se (2); P empty set N=tBu-dppy, E=S (3)) (dppy=2-(diphenylphosphino)pyridine, tBu-dppy=4-tert-butyl-2-(diphenylphosphino)pyridine) have been synthesized and characterized. The nucleophilicity of the [Pt(2)E(2)] unit towards a number of d(10) metal ions and complexes has been demonstrated through the successful isolation of a number of novel heteropolynuclear platinum(II)-copper(I), -silver(I), and -gold(I) complexes: [[Pt(2)(mu(3)-E)(2)(dppy)(4)](2)Ag(3)](PF(6))(3) (E=S (4); Se (5)) and [Pt(2)(dppy)(4)(mu(3)-E)(2)M(2)(dppm)]X(2) (E=S, M=Ag, X=BF(4) (6); E=S, M=Cu, X=PF(6) (7); E=S, M=Au, X=PF(6) (8); E=Se, M=Ag, X=PF(6) (9); E=Se, M=Au, X=PF(6) (10)). Some of them display short metal.metal contacts. These complexes have been found to possess interesting luminescence properties. Through systematic comparison studies, the emission origin has been probed.  相似文献   

11.
Macrocyclic dicopper(II) complexes derived from 2,6-di(R)formylphenols and various linking diamines are surveyed and their magnetic and structural properties assessed. For those systems with "flat" dinuclear centers and no electronic perturbations associated with electron-withdrawing ligands or ligand groups, the complexes exhibit a "straight-line" relationship between exchange integral and phenoxide bridge angle. Within the angle range 98.8-104.7 degrees, 11 complexes are included with -2J in the range 689-902 cm(-)(1). When electron-withdrawing species are present, either as ligands or as groups bound to the macrocycle itself, considerable suppression of the antiferromagnetic exchange component is observed. Single-crystal X-ray diffraction studies are reported for three complexes. [Cu(2)(L1)(H(2)O)(2)]F(2)(CH(3)OH)(2) (1) crystallized in the triclinic system, space group P&onemacr;, with a = 8.1878(5) ?, b = 9.0346(7) ?, c = 10.4048(7) ?, alpha = 103.672(6) degrees, beta = 101.163(5) degrees, gamma = 104.017(5) degrees, and Z = 1. [Cu(2)(L2)Cl(2)] [Cu(2)(L2) (H(2)O)(2)]Cl(ClO(4)).5.5H(2)O (2) crystallized in the monoclinic system, space group P2(1)/n, with a = 14.4305(5) ?, b = 24.3149(8) ?, c = 18.6584(8) ?, beta = 111.282(3) degrees, and Z = 4. [Cu(2)(L3)(H(2)O)(2)](BF(4))(2) (3) crystallized in the triclinic system, space group P&onemacr;, with a = 8.6127(4) ?, b = 8.6321(7) ?, c = 10.8430(10) ?, a = 74.390(10) degrees, beta = 86.050(10) degrees, gamma = 76.350(10) degrees, and Z = 2. Square pyramidal copper ion stereochemistries are observed in all cases, with axially coordinated halogens or water molecules. Strong antiferromagnetic exchange is observed for all complexes (-2J = 784(8) cm(-)(1), Cu-O-Cu 103.65(10) degrees (1); -2J = 801(11) cm(-)(1), Cu-O-Cu 102.4(3), 107.5(3), 102.9(3), 106.1(3) degrees (2); -2J = 689(3) cm(-)(1), Cu-O-Cu 98.8(4) degrees (3)). The presence of electron-withdrawing CN groups on the periphery of the macrocyclic ligand leads to substantially reduced antiferromagnetic exchange.  相似文献   

12.
This paper reports the synthesis, crystal structures, and magnetic properties of a series of lanthanide complexes with nitronyl nitroxide radicals of general formula [[Ln(III)(radical)(4)] x (ClO(4))(3) x (H(2)O)(x) x (THF)(y)] (1-4) and [Ln(III)(radical)(2)(NO(3))(3)] (5, 6) [Ln = La (compounds 1, 3, 5) or Gd (compounds 2, 4, and 6); radical = 2-(2'-benzymidazolyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (NITBzImH, compounds 1, 2, 5, 6) or 2-[2'-[(6'-methyl)benzymidazolyl]]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (NITMeBzImH, compounds 3, 4)]. (1) C(64)H(88)Cl(3)LaN(16)O(24), fw = 1710.76, orthorhombic, Fddd, a = 11.0682(8) A, b = 34.240(3) A, c = 42.787(3) A, V = 16215(2) A(3), Z = 8, R = 0.0876, R(w) = 0.2336. (2) C(64)H(88)Cl(3)GdN(16)O(24), fw = 1729.10, tetragonal, P 4 macro 2c, a = 16.0682(4) A, b = 16.0682(4) A, c = 18.7190(6) A, V = 4833.0(2) A(3), R = 0.0732, R(w) = 0.2218. (3) C(68)H(94)Cl(3)LaN(16)O(23), fw = 1742.80, tetragonal, P 4 macro 2(1)m, a = 21.125(3) A, b = 21.125(3) A, c = 10.938(2) A, V = 4881.5(14) A(3), R = 0.1017, R(w) = 0.3126. (5) C(28)H(34)LaN(11)O(13), fw = 871.57, orthorhombic, Pna2(1), a = 19.5002(12) A, b = 13.0582(8) A, c = 14.5741(9) A, V = 3711.1(4) A(3), R = 0.0331, R(w) = 0.1146. (6) C(28)H(34)GdN(11)O(13), fw = 889.91, orthorhombic, Pna2(1), a = 19.1831(10) A, b = 13.1600(7) A, c = 14.4107(7) A, V = 3638.0(3) A(3), Z = 4, R = 0.0206, R(w) = 0.0625. Compounds 1-4 consist of [M(III)(radical)(4)](3+) cations, uncoordinated perchlorate anions, THF, and water crystallization molecules. In these complexes, the coordination number around the lanthanide ion is eight, and the polyhedron is either a distorted dodecahedron (1) or a distorted cube (2, 3). The crystal structures of 5 and 6 consist of independent [M(III)(radical)(2)(NO(3))(3)] entities in which the lanthanide is ten-coordinated and has a distorted bicapped square antiprism coordination polyhedron. For the lanthanum(III) complexes, the temperature dependence of the magnetic susceptibility indicates that radical-radical magnetic interactions are negligible either for compounds 1 and 3, while for compound 5 it is simulated considering dimers of weakly antiferromagnetically coupled radicals (J(rad-rad) = -1.1 cm(-1)). In the case of the gadolinium(III) compounds (2, 4, 6), each magnetic behavior gives unambiguous evidence of antiferromagnetic Gd(III)-radical interaction (2, J(Gd-rad) = -1.8 cm(-1); 4, J(Gd-rad) = -3.8 cm(-1); 6, J(Gd-rad1) = -4.05 cm(-1) and J(Gd-rad2) = -0.80 cm(-1)), in contrast to the ferromagnetic case generally observed. The nature of the Gd(III)-radical interaction is explained in relation to the donor strength of the free radical ligand.  相似文献   

13.
The novel dimeric silicotungstates [[SiM2W9O34(H2O)]2]12- (M = Mn2+, Cu2+, Zn2+) have been synthesized and characterized by IR spectroscopy, elemental analysis, and magnetic measurements. X-ray single-crystal analyses were carried out on K4Na6Mn[[SiMn2W9O34(H2O)]2].33H2O (1), which crystallizes in the triclinic system, space group P1, with a = 12.2376(7) A, b = 13.6764(8) A, c = 15.6177(9) A, alpha = 70.2860(10) degrees, beta = 79.9150(10) degrees, gamma = 70.2760(10) degrees, and Z = 1; K3Na5[[SiCu2W9O34(H2O)]2].26H2O (2) crystallizes in the triclinic system, space group P1, with a = 11.4271(12) A, b = 12.5956(13) A, c = 15.3223(16) A, alpha = 80.456(2)degrees, beta = 76.383(2) degrees, gamma = 76.968(2) degrees, and Z = 1; K4Na6[[SiZn2W9O34(H2O)]2].34H2O (3) crystallizes also in the triclinic system, space group P1, with a = 12.2596(14) A, b = 13.2555(15) A, c = 16.2892(18) A, alpha = 96.431(2) degrees, beta = 100.944(2) degrees, gamma = 110.404(2) degrees, and Z = 1. The polyanions consist of two lacunary B-alpha-[SiW9O34]10- Keggin moieties linked via a rhomblike M4O16 (M = Mn, Cu, Zn) group leading to a sandwich-type structure. Magnetic measurements show that the central Mn4 unit in 1 exhibits antiferromagnetic (J = -1.77(5) cm(-1)) as well as weak ferromagnetic (J' = 0.08(2) cm(-1)) Mn-Mn exchange interactions. In 2 the Cu-Cu exchange interactions are antiferromagnetic (J = -0.10(2) cm(-1), J' = -0.29(2) cm(-1)).  相似文献   

14.
Novel alkaline earth metal aryl-substituted silylamides were prepared using alkane (Mg) and salt elimination reactions (Mg, Ca, Sr, and Ba). The salt elimination regime involved the treatment of the alkaline earth metal iodides with 2 equiv of the respective potassium amide KNDiip(SiMe(3)), (Diip = 2,6-i-Pr(2)C(6)H(3)). The organomagnesium source for the alkane elimination was ((n)()Bu/(s)()Bu)(2)Mg. All compounds were characterized using (1)H, (13)C NMR, and IR spectroscopy, in addition to X-ray crystallography (except Mg[NDiip(SiMe(3))](2)THF(2)). Crystal data with Mo Kalpha (lambda = 0.710 73 A) are as follows: Mg[NDiip(SiMe(3))](2), 1, a = 9.4687(6) A, b = 9.6818(6) A, c = 17.9296(1) A, alpha = 96.487(1) degrees, beta = 94.537(1) degrees, gamma = 89.222(1) degrees, V = 1608.8(2) A(3), Z = 2 (two independent molecules), triclinic, space group P(-)1, R1 (all data) = 0.0508; (n)()BuMg[NDiip(SiMe(3))]THF(2), 2, a = 9.5413(1) A, b = 16.493(2) A, c = 9.8218(1) A, beta = 108.149(2) degrees, V = 1468.7(4) A(3), Z = 2, monoclinic, space group P2(1), R1(all data) = 0.1232; Ca[NDiip(SiMe(3))](2)THF(2), 4, a = 9.7074(1) A, b = 20.9466(4) A, c = 21.6242(3) A, alpha = 73.573(1) degrees, beta = 78.632(1) degrees, gamma = 89.621(1) degrees, V = 4129.1(1) A(3), Z = 4 (two independent molecules), triclinic, space group P(-)1, R1 (all data) = 0.0902; Sr[NDiip(SiMe(3))](2)THF(2), 5, a = 20.5874(5) A, b = 9.8785(2) A, c = 20.8522(5) A, beta = 102.035(2) degrees, V = 4147.6(2) A(3), Z = 4 (two independent molecules), monoclinic, space group P2/n, R1 (all data) = 0.0756; Ba[NDiip(SiMe(3))](2)THF(2), 6, a = 20.5476(2) A, b = 10.0353(2) A, c = 20.9020(4) A, beta = 101.657(1) degrees, V = 4221.0(1) A(3), Z = 4 (two independent molecules), monoclinic, space group P2/n, R1 (all data) = 0.0573.  相似文献   

15.
We present a (re)investigation of the hexaoxometalates Li(8)MO(6) (M = Sn, Pb, Zr, Hf) and Li(7)MO(6) (M = Nb, Ta, Sb, Bi). Lithium motion and ionic conductivity in the hexaoxometalates were studied using impedance spectroscopy (for Li(7)MO(6), M = Sb, Bi, Ta) and (6)Li and (7)Li solid-state nuclear magnetic resonance (for Li(7)TaO(6)). The NMR data indicate a considerable exchange of Li among the tetrahedral and octahedral voids even at ambient temperature. In an investigation of the crystal structures using laboratory and synchrotron X-ray powder diffraction techniques, the structures of Li(7)TaO(6), Li(7)NbO(6), and Li(7)SbO(6) could be solved and refined. All three reveal a triclinic metric (Li(7)SbO(6), triclinic, P1, a = 5.38503(6) A, b = 5.89164(7) A, c = 5.43074(6) A, alpha = 117.2210(6) degrees, beta = 119.6311(6) degrees, gamma = 63.2520(7) degrees, V = 127.454(3) A(3), Z = 1; Li(7)NbO(6), triclinic, P1, a = 5.37932(9) A, b = 5.91942(11) A, c = 5.37922(9) A, alpha = 117.0033(9) degrees, beta = 119.6023(7) degrees, gamma = 63.2570(9) degrees, V = 126.938(4) A(3), Z = 1; Li(7)TaO(6), triclinic, P1, a = 5.38486(2) A, b = 5.92014(3) A, c = 5.38551(2) A, alpha = 117.0108(2) degrees, beta = 119.6132(2) degrees, gamma = 63.2492(2) degrees, V = 127.208(1) A(3), Z = 1.  相似文献   

16.
Exploiting the ability of the [M(SC[O]Ph)(4)](-) anion to behave like an anionic metalloligand, we have synthesized [Li[Ga(SC[O]Ph)(4)]] (1), [Li[In(SC[O]Ph)(4)]] (2), [Na[Ga(SC[O]Ph)(4)]] (3), [Na(MeCN)[In(SC[O]Ph)(4)]] (4), [K[Ga(SC[O]Ph)(4)]] (5), and [K(MeCN)(2)[In(SC[O]Ph)(4)]] (6) by reacting MX(3) and PhC[O]S(-)A(+) (M = Ga(III) and In(III); X = Cl(-) and NO(3)(-); and A = Li(I), Na(I), and K(I)) in the molar ratio 1:4. The structures of 2, 4, and 6 determined by X-ray crystallography indicate that they have a one-dimensional coordination polymeric structure, and structural variations may be attributed to the change in the alkali metal ion from Li(I) to Na(I) to K(I). Crystal data for 2 x 0.5MeCN x 0.25H(2)O: monoclinic space group C2/c, a = 24.5766(8) A, b = 13.2758(5) A, c = 19.9983(8) A, beta = 108.426(1) degrees, Z = 8, and V = 6190.4(4) A(3). Crystal data for 4: monoclinic space group P2(1)/c, a = 10.5774(7) A, b = 21.9723(15) A, c = 14.4196(10) A, beta = 110.121(1) degrees, Z = 4, and V = 3146.7(4) A(3). Crystal data for 6: monoclinic space group P2(1)/c, a = 12.307(3) A, b = 13.672(3) A, c = 20.575(4) A, beta = 92.356(4) degrees, Z = 4, and V = 3458.8(12) A(3). The thermal decomposition of these compounds indicated the formation of the corresponding AMS(2) materials.  相似文献   

17.
Olefin complexes (silox)(3)M(ole) (silox = (t)Bu(3)SiO; M = Nb (1-ole), Ta (2-ole); ole = C(2)H(4), C(2)H(3)Me, C(2)H(3)Et, C(2)H(3)C(6)H(4)-p-X (X = OMe, H, CF(3)), C(2)H(3)(t)Bu, (c)C(5)H(8), (c)C(6)H(10), (c)C(7)H(10) (norbornene)) rearrange to alkylidene isomers (silox)(3)M(alk) (M = Nb (1=alk), Ta (2=alk); alk = CHMe, CHEt, CH(n)Pr, CHCH(2)C(6)H(4)-p-X (X = OMe, H, CF(3) (Ta only)), CHCH(2)(t)Bu, (c)C(5)H(8), (c)C(6)H(10), (c)C(7)H(10) (norbornylidene)). Kinetics and labeling experiments suggest that the rearrangement proceeds via a delta-abstraction on a silox CH bond by the beta-olefin carbon to give (silox)(2)RM(kappa(2)-O,C-OSi(t)Bu(2)CMe(2)CH(2)) (M = Nb (4-R), Ta (6-R); R = Me, Et, (n)Pr, (n)Bu, CH(2)CH(2)C(6)H(4)-p-X (X = OMe, H, CF(3) (Ta only)), CH(2)CH(2)(t)Bu, (c)C(5)H(9), (c)C(6)H(11), (c)C(7)H(11) (norbornyl)). A subsequent alpha-abstraction by the cylometalated "arm" of the intermediate on an alpha-CH bond of R generates the alkylidene 1=alk or 2=alk. Equilibrations of 1-ole with ole' to give 1-ole' and ole, and relevant calculations on 1-ole and 2-ole, permit interpretation of all relative ground and transition state energies for the complexes of either metal.  相似文献   

18.
Hexarhenium(III) complexes with terminal isothiocyanate ligands, [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)(NCS)(6)] (1) and (L)(4)[Re(6)(mu(3)-Se)(8)(NCS)(6)] (L(+) = PPN(+) (2a), (n-C(4)H(9))(4)N(+) (2b)), have been prepared by three different methods. Complex 1 was prepared by the reaction of [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)Cl(6)] with molten KSCN at 200 degrees C, while 2b was obtained by refluxing the chlorobenzene-DMF (2:1 v/v) solution of [Re(6)(mu(3)-Se)(8)(CH(3)CN)(6)](SbF(6))(2) and [(n-C(4)H(9))(4)N]SCN. The [Re(6)(mu(3)-Se)(8)(NCS)(6)](4)(-) anion was also obtained from a mixture of Cs(2)[Re(6)(mu(3)-Se)(8)Br(4)] and KSCN in C(2)H(5)OH by a mechanochemical activation at room temperature for 20 h and isolated as 2a. The X-ray structures of 1 and 2a.4DMF have been determined (1, C(70)H(144)N(10)S(14)Re(6), monoclinic, space group P2(1)/n (No. 14), a = 14.464(7) A, b = 22.059(6) A, c = 16.642(8) A, beta = 113.62(3) degrees, V = 4864(3) A(3), Z = 2; 2a.4DMF, C(162)H(144)N(14)O(4)P(8)S(6)Se(8)Re(6), triclinic, space group P1 (No. 2), a = 15.263(2) A, b = 16.429(2) A, c = 17.111(3) A, alpha = 84.07(1) degrees, beta = 84.95(1) degrees, gamma = 74.21(1) degrees, V = 4098.3(8) A(3), Z = 1). All the NCS(-) ligands in both complexes are coordinated to the metal center via nitrogen site with the Re-N distances in the range of 2.07-2.13 A. The redox potentials of the reversible Re(III)(6)/Re(III)(5)Re(IV) process in acetonitrile are +0.84 and +0.70 V vs. Ag/AgCl for [Re(6)(mu(3)-S)(8)(NCS)(6)](4)(-) and [Re(6)(mu(3)-Se)(8)(NCS)(6)](4)(-), respectively, which are the most positive among the known hexarhenium complexes with six terminal anionic ligands. The complexes show strong red luminescence with the emission maxima (lambda(max)/nm), lifetimes (tau(em)/micros), and quantum yields (phi(em)) being 745 and 715, 10.4 and 11.8, and 0.091 and 0.15 for 1 and 2b, respectively, in acetonitrile. The data reasonably well fit in the energy-gap plots of other hexarhenium(III) complexes. The temperature dependence of the emission spectra and tau(em) of 1 and [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)Cl(6)] are also reported.  相似文献   

19.
The compounds (Me4N)[A(M(SC(O)Ph)3)2] (A = K, M = Cd (2); A = Na, M = Hg (3); and A = K, M = Hg (4)) were synthesized by reacting the appropriate metal chloride with A+PhC(O)S- and Me4NCl in the ratios 1:3:1 and 2:6:1. The structures of these compounds were determined by single-crystal X-ray diffraction methods. All the compounds are isomorphous, isostructural, and crystallized in the space group P1 with Z = 1. Single-crystal data for 2: a = 106670(2) A, b = 111522(2) A, c = 119294(2) A, alpha = 71782(1) degrees, beta = 85208(1) degrees, gamma = 69418(1) degrees, V = 126140(4) A3, Dcalc = 1528 g cm-3. Single-crystal data for 3: a = 10840(2) A, b = 10946(4) A, c = 12006(3) A, alpha = 7218(2) degrees, beta = 8675(2) degrees, gamma = 6743(2) degrees, V = 12493(6) A3, Dcalc = 1756 g cm-3. Single-crystal data for 4: a = 104780(1) A, b = 112563(2) A, c = 119827(2) A, alpha = 71574(1) degrees, beta = 85084(1) degrees, gamma = 70705(1) degrees, V = 126523(3) A3, Dcalc = 1755 g cm-3. In the [A(M(SC(O)Ph)3)2]- anions, each M(II) atom is bonded to three thiobenzoate ligands through sulfur atoms, giving a trigonal planar MS3 geometry. The carbonyl oxygen atoms from the two [M(SC(O)Ph)3]- anions are bonded to the alkali metal atom, providing an octahedral environment. Solution metal NMR studies showed the concentration-dependent dissociation of the alkali metal ions in the trinuclear anions.  相似文献   

20.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号