首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
A cyclen-based ligand containing trans-acetate and trans-methylenephosphonate pendant groups, H 6DO2A2P, was synthesized and its protonation constants (12.6, 11.43, 5.95, 6.15, 2.88, and 2.77) were determined by pH-potentiometry and (1)H NMR spectroscopy. The first two protonations were shown to occur at the two macrocyclic ring N-CH 2-PO 3 (2-) nitrogens while the third and fourth protonations occur at the two phosphonate groups. In parallel with protonation of the two -PO 3 (2-) groups, the protons from the NH (+)-CH 2-PO 3 (2-) are transferred to the N-CH 2-COO (-) nitrogens. The stability constants of the Ca (2+), Cu (2+), and Zn (2+) (ML, MHL, MH 2L, and M 2L) complexes were determined by direct pH-potentiometry. Lanthanide(III) ions (Ln (3+)) form similar species, but the formation of complexes is slow; so, "out-of-cell" pH-potentiometry (La (3+), Eu (3+), Gd (3+), Y (3+)) and competitive spectrophotometry with Cu(II) ion (Lu (3+)) were used to determine the stability constants. By comparing the log K ML values with those of the corresponding DOTA (H 4DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and DOTP (H 8DOTP = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylenephosphonic acid) complexes, the order DOTA < DO2A2P < DOTP was found for all the metal ion complexes examined here with the exception of the Ca (2+) complexes, for which the order is reversed. The relaxivity of Gd(DO2A2P) decreases between pH 2 and 7 but remains constant in the pH range of 7 < pH < 12 ( r 1 = 3.6 mM (-1) s (-1)). The linewiths of the (17)O NMR signals of water in the absence and presence of Gd(DO2A2P) (at pH = 3.45 and 8.5) between 274 and 350 K are practically the same, characteristic of a q = 0 complex. Detailed kinetic studies of the Ce (3+) and Gd (3+) complexes with DO2A2P showed that complex formation is slow and involves a high stability diprotonated intermediate Ln(H 2DO2A2P)*. Rearrangement of the diprotonated intermediate into the final complex is an OH (-) assisted process but, unlike formation of Ln(DOTA) complexes, rearrangement of Ln(H 2DO2A2P)* also takes place spontaneously likely as a result of transfer of one of the protons from a ring nitrogen to a phosphonate group. The order of the OH (-) assisted formation rates of complexes is DOTA > DO2A2P > DOTP while the order of the proton assisted dissociation rates of the Gd (3+) complexes is reversed, DOTP > DO2A2P > DOTA. (1)H and (13)C NMR spectra of Eu(DO2A2P) and Lu(DO2A2P) were assigned using two-dimensional correlation spectroscopy (2D COSY), heteronuclear multiple quantum coherence (HMQC), heteronuclear chemical shift correlation (HETCOR), and exchange spectroscopy (EXSY) NMR methods. Two sets of (1)H NMR signals were observed for Eu(DO2A2P) characteristic of the presence of two coordination isomers in solution, a twisted square antiprism (TSAP) and a square antiprism (SAP), in the ratio of ~93% and ~7%, respectively. Line shape analysis of the (1)H NMR spectra of Lu(DO2A2P) gave lower activation parameters compared to La(DOTP) for interconversion between coordination isomers. This indicates that the Ln(DO2A2P) complexes are less rigid probably due to the different size and spatial requirements of the carboxylate and phosphonate groups.  相似文献   

2.
We have synthesized ditopic ligands L(1), L(2), and L(3) that contain two DO3A(3-) metal-chelating units with a xylene core as a noncoordinating linker (DO3A(3-) = 1,4,7,10-tetraazacyclododecane-1,4,7-triacetate; L(1) = 1,4-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(2) = 1,3-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(3) = 3,5-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzoic acid). Aqueous solutions of the dinuclear Gd(III) complexes formed with the three ligands have been investigated in a variable-temperature, multiple-field (17)O NMR and (1)H relaxivity study. The (17)O longitudinal relaxation rates measured for the [Gd(2)L(1-3)(H2O)(2)] complexes show strong field dependence (2.35-9.4 T), which unambiguously proves the presence of slowly tumbling entities in solution. The proton relaxivities of the complexes, which are unexpectedly high for their molecular weight, and in particular the relaxivity peaks observed at 40-50 MHz also constitute experimental evidences of slow rotational motion. This was explained in terms of self-aggregation related to hydrophobic interactions, pi stacking between the aromatic linkers, or possible hydrogen bonding between the chelates. The longitudinal (17)O relaxation rates of the [Gd(2)L(1-3)(H2O)(2)] complexes have been analysed with the Lipari-Szabo approach, leading to local rotational correlation times tau(1)(298) of 150-250 ps and global rotational correlation times tau(g)(298) of 1.6-3.4 ns (c(Gd): 20-50 mM), where tau(1)(298) is attributed to local motions of the Gd segments, while tau(g)(298) describes the overall motion of the aggregates. The aggregates can be partially disrupted by phosphate addition; however, at high concentrations phosphate interferes in the first coordination sphere by replacing the coordinated water. In contrast to the parent [Gd(DO3A)(H2O)(1.9)], which presents a hydration equilibrium between mono- and dihydrated species, a hydration number of q = 1 was established for the [Ln(2)L(1-3)(H2O)(2)] chelates by (17)O chemical shift measurements on Ln = Gd and UV/Vis spectrophotometry for Ln = Eu. The exchange rate of the coordinated water is higher for [Gd(2)L(1-3)(H2O)(2)] complexes k(ex)(298) = 7.5-12.0 x 10(6) s(-1)) than for [Gd(DOTA)(H2O)](-). The proton relaxivity of the [Gd(2)L(1-3)(H2O)(2)] complexes strongly decreases with increasing pH. This is related to the deprotonation of the inner-sphere water, which has also been characterized by pH potentiometry. The protonation constants determined for this process are logK(OH) = 9.50 and 10.37 for [Gd(2)L(1)(H2O)(2)] and [Gd(2)L(3)(H2O)(2)], respectively.  相似文献   

3.
We conducted relaxometric and water exchange studies of the cationic [Gd((S,S,S,S)-THP)(H2O)]3+ complex (THP 1,4,7,10-tetrakis(2-hydroxy-propyl)-1,4,7,10-tetraazacyclododecane). While the NMRD profiles obtained are typical for DOTA-like complexes (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate), variable-temperature 7O NMR investigations revealed a relatively high water exchange rate (k(298)(ex) = 1.89 x 10(7) s(-1)). These results differ from those reported for other cationic tetraamide macrocyclic Gd(III) complexes, which exhibit characteristically low exchange rates. Since the low exchange rates are attributed partially to the geometry of the M isomer (square antiprismatic) in the tetraamide derivatives, the atypical water exchange rate observed in [Gd((S,S,S,S)-THP-(H2O)]3+ may result from a twisted square antiprismatic structure in this complex and from the relatively high steric strain at the water coordination site as a result of the presence of methyl groups at the alpha-position with respect to the Gd(III)-bound O atoms of THP.  相似文献   

4.
This work describes the modification of the chelating agent 1,4,7,10-tetraazacyclododecane-N,N',N' ',N' "-tetraacetic acid (DOTA) to improve the rate of metal loading for radioimmunotherapy applications. Previous ab initio calculations predicted that the compounds 1,4,7,10-tetra(carboxyethyl)-1,4,7,10-tetraazacyclododecane (DO4Pr) and 1,4,7-tris(carboxymethyl)-10-(carboxyethyl)-1,4,7,10-tetraazacyclododecane (DO3A1Pr) have a ca. 2000-fold improvement in yttrium metal loading rates compared to those of DOTA (Jang, Y. H.; Blanco, M.; Dasgupta, S.; Keire, D. A.; Shively, J. E.; Goddard, W. A., III. J. Am. Chem. Soc. 1999, 121, 6142-6151). In this study, we report the synthesis, purification, (1)H-NMR chemical shift assignments, pK(a) values, metal loading rate measurements, and additional ab initio calculations of these two compounds. The yttrium loading rates of DO3A1Pr are approximately twice those of DOTA, at pH 4.6 and 37 degrees C. The NMR data indicates that the DO4Pr analogue forms a stable type I complex but does not form a type II complex. The new ab initio calculations performed on DO4Pr and DO3A1Pr indicate that the rate-determining step is the deprotonation of the first macrocycle amine proton, not the second proton as assumed in the previous calculations. The new calculations predict an improvement in the rate of metal loading that more closely matches the experimentally observed change in the rate.  相似文献   

5.
A new bifunctional octa-coordinating ligand containing an aminobenzyl moiety, DO3APABn (H4DO3APABn = 1,4,7,10-tetraazacyclododecane-4,7,10-triacetic-1-{methyl[(4-aminophenyl)methyl]phosphinic acid}), has been synthesized. Its lanthanide(III) complexes contain one water molecule in the first coordination sphere. The high-resolution 1H and 31P spectra of [Eu(H2O) (DO3APABn)]- show that the twisted square-antiprismatic form of the complexes is more abundant in respect to the corresponding Eu(III)-DOTA complex. The 1H NMRD and variable-temperature 17O relaxation measurements of [Gd(H2O)(DO3APABn)]- show that the water residence time is short (298tauM = 16 ns) and falls into the optimal range predicted by theory for the attainment of high relaxivities once this complex would be endowed by a slow tumbling rate. The relaxivity (298r1 = 6.7 mM(-1) s(-1) at 10 MHz) is higher than expected as a consequence of a significant contribution from the second hydration sphere. These results prompt the use of [Gd(H2O)(DO3APABn)]- as a building block for the set-up of highly efficient macromolecular MRI contrast agents.  相似文献   

6.
The Gd(III) complexes of the two dimeric ligands [en(DO3A)2] {N,N'-bis[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-10-yl-methylcarbonyl]-N,N'-ethylenediamine} and [pi(DTTA)2]8- [bisdiethylenetriaminepentaacetic acid (trans-1,2-cyclohexanediamine)] were synthesized and characterized. The 17O NMR chemical shift of H2O induced by [en{Dy(DO3A)}2] and [pi{Dy(DTTA)}2]2- at pH 6.80 proved the presence of 2.1 and 2.2 inner-sphere water molecules, respectively. Water proton spin-lattice relaxation rates for [en{Gd(DO3A)(H2O)}2] and [pi{Gd(DTTA)(H2O)}2]2- at 37.0 +/- 0.1 degrees C and 20 MHz are 3.60 +/- 0.05 and 5.25 +/- 0.05 mM(-1) s(-1) per Gd, respectively. The EPR transverse electronic relaxation rate and 17O NMR transverse relaxation time for the exchange lifetime of the coordinated H2O molecule and the 2H NMR longitudinal relaxation rate of the deuterated diamagnetic lanthanum complex for the rotational correlation time were thoroughly investigated, and the results were compared with those reported previously for other lanthanide(III) complexes. The exchange lifetimes for [en{Gd(DO3A)(H2O)}2] (769 +/- 10 ns) and [pi{Gd(DTTA)(H2O)}2]2- (910 +/- 10 ns) are significantly higher than those of [Gd(DOTA)(H2O)]- (243 ns) and [Gd(DTPA)(H2O)]2- (303 ns) complexes. The rotational correlation times for [en{Gd(DO3A)(H2O)}2] (150 +/- 11 ps) and [pi{Gd(DTTA)(H2O)}2]2- (130 +/- 12 ps) are slightly greater than those of [Gd(DOTA)(H2O)]- (77 ps) and [Gd(DTPA)(H2O)]2- (58 ps) complexes. The marked increase in relaxivity (r1) of [en{Gd(DO3A)(H2O)}2] and [pi{Gd(DTTA)(H2O)}2]2- result mainly from their longer rotational correlation time and higher molecular weight.  相似文献   

7.
Introduction Recent interest in polyazamacrocyclic paramagnetic Gd(III) chelates largely results form their clinical appli-cation for magnetic resonance imaging (MRI) contrast agents. The ligand DOTA (1,4,7,10-tetraazacyclodo- decane-N,N',N',N'-tetraacetic acid) forms one of the most thermodynamically stable and kinetically inert complexes with the trivalent lanthanide cations of any known chelate. These properties make Gd-DOTA one of the most effective and the safest MRI contrast …  相似文献   

8.
Equilibria in the U(VI)H(2)OCO(2)(g) system in 0.5M sodium perchlorate medium at 25 degrees have been studied. By using thermal tensing spectrophotometry (TLS) and a very low total concentration of U(V1) (4 x 10(-6)M) information could be obtained on equilibria involving UO(2)(CO(3))(2-)(2) without complications due to formation of the trimer (UO(2))(3)(CO(3))(6-)(6). The experimental data allowed a precise determination of the equilibrium constant log K(3) = 6.35 +/- 0.05 for the reaction UO(2)(CO(3))(2-)(2) + CO(2-)(3) right harpoon over left harpoonright harpoon over left harpoon UO(2)(CO(3))(4-)(3). The interpretation of TLS data is briefly discussed, as well as the potential use of this technique for studies of the speciation of trace elements in natural water systems.  相似文献   

9.
In the objective of optimizing water exchange rate on stable, nine-coordinate, monohydrated Gd(III) poly(amino carboxylate) complexes, we have prepared monopropionate derivatives of DOTA4- (DO3A-Nprop4-) and DTPA5- (DTTA-Nprop5-). A novel ligand, EPTPA-BAA(3-), the bisamylamide derivative of ethylenepropylenetriamine-pentaacetate (EPTPA5-) was also synthesized. A variable temperature 17O NMR study has been performed on their Gd(III) complexes, which, for [Gd(DTTA-Nprop)(H2O)]2- and [Gd(EPTPA-BAA)(H2O)] has been combined with multiple field EPR and NMRD measurements. The water exchange rates, k(ex)(298), are 8.0 x 10(7) s(-1), 6.1 x 10(7) s(-1) and 5.7 x 10(7) s(-1) for [Gd(DTTA-Nprop)(H2O)]2-, [Gd(DO3A-Nprop)(H2O)]- and [Gd(EPTPA-BAA)(H2O)], respectively, all in the narrow optimal range to attain maximum proton relaxivities, provided the other parameters (electronic relaxation and rotation) are also optimized. The substitution of an acetate with a propionate arm in DTPA5- or DOTA4- induces increased steric compression around the water binding site and thus leads to an accelerated water exchange on the Gd(III) complex. The k(ex) values on the propionate complexes are, however, lower than those obtained for [Gd(EPTPA)(H2O)]2- and [Gd(TRITA)(H2O)]- which contain one additional CH(2) unit in the amine backbone as compared to the parent [Gd(DTPA)(H2O)]2- and [Gd(DOTA)(H2O)]-. In addition to their optimal water exchange rate, [Gd(DTTA-Nprop)(H2O)]2- has, and [Gd(DO3A-Nprop)(H2O)]- is expected to have sufficient thermodynamic stability. These properties together make them prime candidates for the development of high relaxivity, macromolecular MRI contrast agents.  相似文献   

10.
Eu(II) complexes are potential candidates for pO(2)-responsive contrast agents in magnetic resonance imaging. In this regard, we have characterized two novel macrocyclic Eu(II) chelates, [Eu(II)(DOTA)(H(2)O)](2-) and [Eu(II)(TETA)](2-) (H(4)DOTA=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, H(4)TETA=1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid) in terms of redox and thermodynamic complex stability, proton relaxivity, water exchange, rotation and electron spin relaxation. Additionally, solid-state structures were determined for the Sr(II) analogues. They revealed no inner-sphere water in the TETA and one inner-sphere water molecule in the DOTA complex. This hydration pattern is retained in solution, as the (17)O chemical shifts and (1)H relaxation rates proved for the corresponding Eu(II) compounds. The thermodynamic complex stability, determined from the formal redox potential and by pH potentiometry, of [Eu(II)(DOTA)(H(2)O)](2-) (lg K(Eu(II))=16.75) is the highest among all known Eu(II) complexes, whereas the redox stabilities of both [Eu(II)(DOTA)(H(2)O)](2-) and [Eu(II)(TETA)](2-) are inferior to that of 18-membered macrocyclic Eu(II) chelates. Variable-temperature (17)O NMR, NMRD and EPR studies yielded the rates of water exchange, rotation and electron spin relaxation. Water exchange on [Eu(II)(DOTA)(H(2)O)](2-) is remarkably fast (k298(ex)=2.5 x 10(9) s(-1)). The near zero activation volume (DeltaV++ =+0.1+/-1.0 cm(3) mol(-1)), determined by variable-pressure (17)O NMR spectroscopy, points to an interchange mechanism. The fast water exchange can be related to the low charge density on Eu(II), to an unexpectedly long M-O(water) distance (2.85 A) and to the consequent interchange mechanism. Electron spin relaxation is considerably slower on [Eu(II)(DOTA)(H(2)O)](2-) than on the linear [Eu(II)(DTPA)(H(2)O)](3-) (H(5)DTPA=diethylenetriaminepentaacetic acid), and this difference is responsible for its 25 percent higher proton relaxivity (r(1)=4.32 mM(-1) s(-1) for [Eu(II)(DOTA)(H(2)O)](2-) versus 3.49 mM(-1) s(-1) for [Eu(II)(DTPA)(H(2)O)](3-); 20 MHz, 298 K).  相似文献   

11.
Given the practical advantages of the (68)Ga isotope in positron emission tomography applications, gallium complexes are gaining increasing importance in biomedical imaging. However, the strong tendency of Ga(3+) to hydrolyze and the slow formation and very high stability of macrocyclic complexes altogether render Ga(3+) coordination chemistry difficult and explain why stability and kinetic data on Ga(3+) complexes are rather scarce. Here we report solution and solid-state studies of Ga(3+) complexes formed with the macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, (DOTA)(4-), and its mono(n-butylamide) derivative, (DO3AM(Bu))(3-). Thermodynamic stability constants, log K(GaDOTA) = 26.05 and log K(GaDO3AM(Bu)) = 24.64, were determined by out-of-cell pH-potentiometric titrations. Due to the very slow formation and dissociation of the complexes, equilibration times of up to ~4 weeks were necessary. The kinetics of complex dissociation were followed by (71)Ga NMR under both acidic and alkaline conditions. The GaDOTA complex is significantly more inert (τ(1/2) ~12.2 d at pH = 0 and τ(1/2) ~6.2 h at pH = 10) than the GaDO3AM(Bu) analogue (τ(1/2) ~2.7 d at pH = 0 and τ(1/2) ~0.7 h at pH = 10). Nevertheless, the kinetic inertness of both chelates is extremely high and approves the application of Ga(3+) complexes of such DOTA-like ligands in molecular imaging. The solid-state structure of the GaDOTA complex, crystallized from a strongly acidic solution (pH < 1), evidenced a diprotonated form with protons localized on the free carboxylate pendants.  相似文献   

12.
Rapid water exchange and slow rotation are essential for high relaxivity MRI contrast agents. A variable-temperature and -pressure (17)O NMR study at 14.1, 9.4, and 1.4 T has been performed on the dimeric BO(DO3A)(2), 2,11-dihydroxy-4,9-dioxa-1,12-bis[1,4,7,10-tetraaza-4,7,10-tris(carboxymethyl)cyclododecyl]dodecane, complex of Gd(III). This complex is of relevance to MRI as an attempt to gain higher (1)H relaxivity by slowing down the rotation of the molecule compared to monomeric Gd(III) complexes used as contrast agents. From the (17)O NMR longitudinal and transverse relaxation rates and chemical shifts we determined the parameters characterizing water exchange kinetics and the rotational motion of the complex, both of which influence (1)H relaxivity. The rate constant and the activation enthalpy for the water exchange, k(ex) and DeltaH(), are (1.0 +/- 0.1) x 10(6) s(-)(1)and (30.0 +/- 0.2) kJ mol(-)(1), respectively, and the activation volume, DeltaV(), of the process is (+0.5 +/- 0.2) cm(3) mol(-)(1), indicating an interchange mechanism. The rotational correlation time becomes about three times longer compared to monomeric Gd(III) polyamino-polyacetate complexes studied so far: tau(R) = (250 +/- 5) ps, which results in an enhanced proton relaxivity by raising the correlation time for the paramagnetic interaction.  相似文献   

13.
The first high nuclearity, mixed-metal Bi(III)/Mn(IV) and Bi(III)/Mn(III) complexes are reported. The former complexes are [Bi(2)Mn(IV)(6)O(9)(O(2)CEt)(9)(HO(2)CEt)(NO(3))(3)] (1) and [Bi(2)Mn(IV)(6)O(9)(O(2)CPh)(9)(HO(2)CPh)(NO(3))(3)] (2) and were obtained from the comproportionation reaction between Mn(O(2)CR)(2) and MnO(4)(-) in a 10:3 ratio in the presence of Bi(NO(3))(3) (3 equiv) in either a H(2)O/EtCO(2)H (1) or MeCN/PhCO(2)H (2) solvent medium. The same reaction that gives 2, but with Bi(O(2)CMe)(3) and MeNO(2) in place of Bi(NO(3))(3) and MeCN, gave the lower oxidation state product [BiMn(III)(10)O(8)(O(2)CPh)(17)(HO(2)CPh)(H(2)O)] (3). Complexes 1 and 2 are near-isostructural and possess an unusual and high symmetry core topology consisting of a Mn(IV)(6) wheel with two central Bi(III) atoms capping the wheel on each side. In contrast, the [BiMn(III)(10)O(8)](17+) core of 3 is low symmetry, comprising a [BiMn(3)(μ(3)-O)(2)](8+) butterfly unit, four [BiMn(3)(μ(4)-O)](10+) tetrahedra, and two [BiMn(2)(μ(3)-O)](7+) triangles all fused together by sharing common Mn and Bi vertices. Variable-temperature, solid-state dc and ac magnetization data on 1-3 in the 1.8-300 K range revealed that 1 and 2 possess an S = 0 ground state spin, whereas 3 possesses an S = 2 ground state. The work offers the possibility of access to molecular analogs of the multifunctional Bi/Mn/O solids that are of such great interest in materials science.  相似文献   

14.
Tissue hypoxia occurs in pathologic conditions, such as cancer, ischemic heart disease and stroke when oxygen demand is greater than oxygen supply. An imaging method that can differentiate hypoxic versus normoxic tissue could have an immediate impact on therapy choices. In this work, the gadolinium(III) complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) with a 2-nitroimidazole attached to one carboxyl group via an amide linkage was prepared, characterized and tested as a hypoxia-sensitive MRI agent. A control complex, Gd(DO3A-monobutylamide), was also prepared in order to test whether the nitroimidazole side-chain alters either the water proton T(1) relaxivity or the thermodynamic stability of the complex. The stabilities of these complexes were lower than that of Gd(DOTA)(-) as expected for mono-amide derivatives. The water proton T(1) relaxivity (r(1)), bound water residence lifetime (τ(M)) and rotational correlation time (τ(R)) of both complexes was determined by relaxivity measurements, variable temperature (17) O?NMR spectroscopy and proton nuclear magnetic relaxation dispersion (NMRD) studies. The resulting parameters (r(1) =6.38?mM(-1) s(-1) at 20?MHz, τ(M) =0.71?μs, τ(R) =141?ps) determined for the nitroimidazole derivative closely parallel to those of other Gd(DO3A-monoamide) complexes of similar molecular size. In vitro MR imaging experiments with 9L rat glioma cells maintained under nitrogen (hypoxic) versus oxygen (normoxic) gas showed that both agents enter cells but only the nitroimidazole derivative was trapped in cells maintained under N(2) as evidenced by an approximately twofold decrease in T(1) measured for hypoxic cells versus normoxic cells exposed to this agent. These results suggest that the nitroimidazole derivative might serve as a molecular reporter for discriminating hypoxic versus normoxic tissues by MRI.  相似文献   

15.
16.
The synthesis and characterization of a new class of DOTA (1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane) monoamide-linked glycoconjugates (glucose, lactose and galactose) of different valencies (mono, di and tetra) and their Sm(III), Eu(III) and Gd(III) complexes are reported. The 1H NMR spectrum of Eu(III)-DOTALac2 shows the predominance of a single structural isomer of square antiprismatic geometry of the DOTA chelating moiety and fast rotation about the amide bond connected to the targeting glycodendrimer. The in vitro relaxivity of the Gd(III)-glycoconjugates was studied by 1H nuclear magnetic relaxation dispersion (NMRD), yielding parameters close to those reported for other DOTA monoamides. The known recognition of sugars by lectins makes these glycoconjugates good candidates for medical imaging agents (MRI and gamma scintigraphy).  相似文献   

17.
The chemistry of polyamino carboxylates and their use as ligands for Ln(3+) ions is of considerable interest from the point of view of the development of new imaging agents. Of particular interest is the chemistry of the macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and its derivatives. Herein we report that the tetramethylated DOTA derivative, DOTMA, possess several properties that, from an imaging agent development point of view, are more advantageous than those of the parent DOTA. In particular, the Ln(3+) chelates of DOTMA exhibit a marked preference for the monocapped twisted square antiprismatic coordination isomer which imparts more rapid water exchange kinetics on the chelates; τ(M)(298) was determined to be 85 ns for GdDOTMA. Differential analysis of the (17)O R(2ρ) temperature profiles of both GdDOTA and GdDOTMA afforded the τ(M)(298) values for the square (SAP) and twisted square antiprismatic (TSAP) isomers of each chelate that were almost identical: 365 ns (SAP) and 52 ns (TSAP). The origin of this accelerated water exchange in the TSAP isomer appears to be the slightly longer Gd-OH(2) bond distance (2.50 ?) that is observed in the crystal structure of GdDOTMA which crystallizes in the P(2) space group as a TSAP isomer. The Ln(3+) chelates of DOTMA also exhibit high thermodynamic stabilities ranging from log K(ML) = 20.5 for CeDOTMA, 23.5 for EuDOTMA and YbDOTMA comparable to, but a shade lower than, those of DOTA.  相似文献   

18.
Xing W  Ingman F 《Talanta》1982,29(8):707-711
The complexation reaction between Alizarin complexan ([3-N,N-di(carboxymethyl)aminomethyl]-1,2-dihydroxyanthraquinone; H(4)L) and zinc(II), nickel(II), lead(II), cobalt(II) and copper(II) has been studied by a spectrophotometric method. All these metal ions form 1:1 complexes with HL; 2:1 metal:ligand complex were found only for Pb(II) and Cu(II). The stability constants are (ionic strength I = 0.1, 20 degrees C): Zn(2+) + HL(3-) right harpoon over left harpoon ZnHL(-) log K +/- 3sigma(log K) = 12.19 +/- 0.09 (I = 0.5) Ni(2+) + HL(3-) right harpoon over left harpoon NiHL(-) log K +/- 3sigma(log K) = 12.23 +/- 0.21 Pb(2+) + HL(3-) right harpoon over left harpoon PbHL(-) log K +/- 3sigma(log K) = 11.69 +/- 0.06 PbHL(-) + Pb(2+) right harpoon over left harpoon Pb(2)L + H(+) log K approximately -0.8 Co(2+) + HL(3-) right harpoon over left harpoon CoHL(-) log K 3sigma(log K) = 12.25 + 0.13 Cu(2+) + HL(3-) right harpoon over left harpoon CuHL(-) log K 3sigma(log K) = 14.75 +/- 0.07 Cu(2+) + CuHL(-) right harpoon over left harpoon Cu(2)L + H(+) log K approximately 3.5 The solubility and stability of both the reagent and the complexes and the closenes of the values of the stability constants make this reagent suitable for the photometric detection of several metal ions in the eluate from an ion-exchange column.  相似文献   

19.
The carbonate complexation of curium(III) in aqueous solutions with high ionic strength was investigated below solubility limits in the 10-70 degrees C temperature range using time-resolved laser-induced fluorescence spectroscopy (TRLFS). The equilibrium constant, K(3), for the Cm(CO(3))(2-) + CO(3)(2-) right harpoon over left harpoon Cm(CO(3))(3)(3-) reaction was determined (log K(3) = 2.01 +/- 0.05 at 25 degrees C, I = 3 M (NaClO(4))) and compared to scattered previously published values. The log K(3) value for Cm(III) was found to increase linearly with 1/T, reflecting a negligible temperature influence on the corresponding molar enthalpy change, Delta(r)H(3) = 12.2 +/- 4.4 kJ mol(-1), and molar entropy change, Delta(r)S(3) = 79 +/- 16 J mol(-1) K(-1). These values were extrapolated to I = 0 with the SIT formula (Delta(r)H(3) degrees = 9.4 +/- 4.8 kJ mol(-1), Delta(r)S(3) degrees = 48 +/- 23 J mol(-1) K(-1), log K(3) degrees = 0.88 +/- 0.05 at 25 degrees C). Virtually the same values were obtained from the solubility data for the analogous Am(III) complexes, which were reinterpreted considering the transformation of the solubility-controlling solid. The reaction studied was found to be driven by the entropy. This was interpreted as a result of hydration changes. As expected, excess energy changes of the reaction showed that the ionic strength had a greater influence on Delta(r)S(3) than it did on Delta(r)H(3).  相似文献   

20.
The formation of ion-pair adducts between the cationic complex La(THP)3+ (THP = 1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane) and the anionic complexes Tm(DOTA)- (DOTA = 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetate), Tm(DTPA)2- (DTPA = diethylenetriamine-N,N,N',N",N"-pentaacetate), Tm(TTHA)3- (TTHA = triethylenetetraamine-N,N,N',N",N"',N"'-hexaacetate), and Tm(DOTP)5- (DOTP = 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetrakis(methylenephosphonate)) is examined by 13C NMR spectroscopy. The induced 13C shifts of the La(THP)3+ complex are followed by titration of the Tm(III) complexes of DOTA, DTPA, and TTHA at pH 7. From these data, the stability constants are calculated to be beta 1 = 64 M-1 (1:1), beta 1 = 296 M-1 (1:1), and beta 2 = 26,000 M-2 (2:1) for the ion pairs of La(THP)3+, with Tm(DOTA)-, Tm(DTPA)2-, and Tm(TTHA)3-, respectively. The La(THP)3+,Tm(DOTP)5- system elicits chiral resolution of the rapidly interconverting Tm(DOTP)5- isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号