首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Ab initio molecular orbital (MO) calculations have been carried out for base-hydrogen fluoride (HF) complexes (base = O3 and SO2) in order to elucidate the structures and energetics of the complexes. The ab initio calculations were performed up to the QCISD(T)/6-311++G(d,p) level of theory. In both complexes, hydrogen-bonded structures where the hydrogen of HF orients toward one of the oxygen atoms of bases were obtained as stable forms. The calculations showed that cis and trans isomers exist in both complexes. All calculations for the SO2-HF complex indicated that the cis form is more stable in energy than the trans form. On the other hand, in O3-HF complexes, the stable structures are changed by the ab initio levels of theory used, and the energies of the cis and trans forms are close to each other. From the most sophisticated calculations (QCISD(T)/6-311++G(d,p)//QCISD/6-311+G(d) level), it was predicted that the complex formation energies for cis SO2-HF, trans SO2-HF, cis O3-HF, and trans O3-HF are 6.1, 5.7, 3.4, and 3.6 kcal/mol, respectively, indicating that the binding energy of HF to SO2 is larger than that of O3. The harmonic vibrational frequencies calculated for cis O3-HF and cis SO2-HF complexes were in good agreement with the experimental values measured by Andrews et al. Also, the calculated rotation constants for cis SO2-HF agreed with the experiment.  相似文献   

2.
The molecular structure of the trans isomer of metal-free phthalocyanine (H2Pc) is determined using the gas electron diffraction (GED) method and high-level quantum chemical calculations. B3LYP calculations employing the basis sets 6-31G**, 6-311++G**, and cc-pVTZ give two tautomeric isomers for the inner H atoms, a trans isomer having D2h symmetry and a cis isomer having C2v symmetry. The trans isomer is calculated to be 41.6 (B3LYP/6-311++G**, zero-point corrected) and 37.3 kJ/mol (B3LYP/cc-pVTZ, not zero-point corrected) more stable than the cis isomer. However, Hartree-Fock (HF) calculations using different basis sets predict that cis is preferred and that trans does not exist as a stable form of the molecule. The equilibrium composition in the gas phase at 471 degrees C (the temperature of the GED experiment) calculated at the B3LYP/6-311++G** level is 99.8% trans and 0.2% cis. This is in very good agreement with the GED data, which indicate that the mole fraction of the cis isomer is close to zero. The transition states for two mechanisms of the NH tautomerization have been characterized. A concerted mechanism where the two H atoms move simultaneously yields a transition state of D2h symmetry and an energy barrier of 95.8 kJ/mol. A two-step mechanism where a trans isomer is converted to a cis isomer, which is converted into another trans isomer, proceeds via two transition states of C(s) symmetry and an energy barrier of 64.2 kJ/mol according to the B3LYP/6-311++G** calculation. The molecular geometry determined from GED is in very good agreement with the geometry obtained from the quantum chemical calculations. Vibrational frequencies, IR, and Raman intensities have been calculated using B3LYP/6-311++G**. These calculations indicate that the molecule is rather flexible with six vibrational frequencies in the range of 20-84 cm(-1) for the trans isomer. The cis isomer might be detected by infrared matrix spectroscopy since the N-H stretching frequencies are very different for the two isomers.  相似文献   

3.
Ab initio molecular orbital calculations have been employed to characterize the structure and bonding of the (HO2-H2O)+ radical cation system. Geometry optimization of this system was carried out using unrestricted density functional theory in conjunction with the BHHLYP functional and 6-311++G(2df,2p) as well as 6-311++G(3df,3p) basis sets, the second-order M?ller-Plesset perturbation (MP2) method with the 6-311++G(3df,3p) basis set, and the couple cluster (CCSD) method with the aug-cc-pVTZ basis set. The effect of spin multiplicity on the stability of the (HO2-H2O)+ system has been studied and also compared with that of oxygen. The calculated results suggest a proton-transferred hydrogen bond between HO2 and H2O in H3O3+ wherein a proton is partially transferred to H2O producing the O2...H3O+ structure. The basis set superposition error and zero-point energy corrected results indicate that the H3O3+ system is energetically more stable in the triplet state; however, the singlet state of H3O3+ is more stable with respect to its dissociation into H3O+ and singlet O2. Since the resulting proton-transferred hydrogen-bonded complex (O2...H3O+) consists of weakly bound molecular oxygen, it might have important implications in various chemical processes and aquatic life systems.  相似文献   

4.
3-Furaldehyde (3FA) was isolated in an argon matrix at 12 K and studied using FTIR spectroscopy and quantum chemistry. The molecule has two conformers, with trans and cis orientation of the O=C-C=C dihedral angle. At the B3LYP/6-311++G(d,p) level of theory, the trans form was computed to be ca. 4 kJ mol(-1) more stable than the cis form. The relative stability of the two conformers was explained using the natural bond orbital (NBO) method. In fair agreement with their calculated relative energies and the high barrier of rotamerization (ca. 34 kJ mol(-1) from trans to cis), the trans and cis conformers were trapped in an argon matrix from the compound room temperature gas phase in proportion ~7:1. The experimentally observed vibrational signatures of the two forms are in a good agreement with the theoretically calculated spectra. Broad-band UV-irradiation (λ > 234 nm) of the matrix-isolated compound resulted in partial trans → cis isomerization, which ended at a photostationary state with the trans/cis ratio being ca. 1.85:1. This result was interpreted based on results of time-dependent DFT calculations. Irradiation at higher energies (λ > 200 nm) led to decarbonylation of the compound, yielding furan, cyclopropene-3-carbaldehyde, and two C(3)H(4) isomers: cyclopropene and propadiene.  相似文献   

5.
IntroductionThenitrogen sulfurcontainingcompoundshaveat tractedmuchattentioninthefieldsofpolymericmaterialsandatmospherechemistry .1 4 Andsomeavailableexperi mentalandtheoreticalinformationwasreportedaboutthesecompoundswithH elementorotherfunctionalgroups…  相似文献   

6.
类硅烯H2C=SiLiBr与RH (R=F, OH, NH2)的插入反应   总被引:1,自引:0,他引:1  
采用DFT B3LYP和QCISD方法研究了类硅烯H2C=SiLiBr与RH (R=F, OH, NH2)的插入反应. 在B3LYP/6- 311+G(d,p)水平上优化了反应势能面上的驻点构型. 结果表明, H2C=SiLiBr与HF, H2O或NH3发生插入反应的机理相同. QCISD/6-311++G(d,p)//B3LYP/6-311+G(d,p)计算的三个反应的势垒分别为148.62, 164.42和165.07 kJ•mol-1, 反应热分别为-69.63, -43.02和-28.27 kJ•mol-1. 相同条件下发生插入反应时, 反应活性都是H—F>H—OH>H—NH2.  相似文献   

7.
采用密度泛函方法(B3LYP)在6-311+G(d,p)基组水平上研究了CH3CH2S自由基H迁移异构化以及裂解反应的微观动力学机理. 在QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)+ZPE水平上进行了单点能校正. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了在200~2000 K温度区间内的速率常数kTST和kCVT, 同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT. 研究结果表明, CH3CH2S自由基1,2-H迁移、1,3-H迁移、C—C键断裂和β-C—H键断裂反应的势垒ΔE≠分别为149.74, 144.34, 168.79和198.29 kJ/mol. 当温度低于800 K时, 主要发生1,2-H迁移反应, 高于1800 K时, 主要表现为C—C键断裂反应, 在1300—1800 K范围内, 1,3-H迁移反应是优势通道, 在计算的整个温度段内, β-C—H键断裂反应可以忽略.  相似文献   

8.
<正> Mr = 431,.6 orthorhombic,P212121,a = 8.526(2), b = 9.970(2), c= 29.787(6)X,Z=4,V=2532.0A3,Dc=1.132g.cm-3,λ(MoKα)=0.71073A,μ=0.67cm-1, F(000) = 952, final R= 0.069 for 1733 observed reflections with I>1σ(I). All six-membered rings in this free base are in the chair form and the five-membered ring C takes the envelope conformation, with the ring fusions A/B traps, B/C trans, C/D cis, D/E trans and E/F trans. There is one crystal water whose oxygen atom joins the adjacent alkaloid molecules by the inter-molecular hydrogen bonds O(1)-H... 0(3)-H(31)...0(2)=C(6). Pertinent parameters for the hydrogen bonding system are: .0(1)...0(3) 2.878(6), 0(2)...O(3) 2.917(6)A,O(1)-H...O(3) 178.3(3)°,and 0(3)-H(31)...0(2) 165.6(3)°.  相似文献   

9.
H3PO→H2POH异构化反应的直接动力学研究   总被引:3,自引:0,他引:3  
在QCISD(T)/6-311C++G(2df,2pd)//QCISD/6-311C++G(d,p)+ZPE水平上,对H3PO的异构化反应H3PO→(1)H2POH(trans)→(2)H2POH(cis)进行了计算研究.结果表明,H原子由P原子向O原子迁移反应(1)的能垒为250.0kJ/mol,是反应速率控制步骤,而O_H键绕P_O键旋转的构型转化反应(2)的能垒只为12.3kJ/mol.利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了反应(1)在200~2000K温度区间内的速率常数kTST和kCVT,获得了经小曲率隧道效应(SCT)及Eckart模型校正后的速率常数kTST/Eckart和kCVT/SCT.对只涉及H原子迁移的反应(1),量子力学隧道效应的影响在低温段非常明显,而变分效应对反应速率常数的影响很小.  相似文献   

10.
采用密度泛函理论研究了过渡金属钒族氧化物阳离子团簇(M2O5)+m=1,2(M=V, Nb, Ta)与C2H4气相反应机理. 反应为(M2O5)m++C2H4→(M2O5)m-1M2O4++C2H4O, 反应物先化合生成C—O键相连的化合物, 经过过渡态后M—O键断裂, 从而发生氧原子转移到碳氢化合物上的反应. 对于V2O5+与C2H4的反应, 存在经顺式和反式两种过渡态结构路径, 从能量上看, 经反式过渡态结构的路径更有利. 计算结果表明, 发生反应时C2H4与钒氧化物阳离子反应大量放热, 而与铌、钽氧化物阳离子反应却放热较少甚至不放热, 这与实验结果一致. 钒、铌、钽氧化物阳离子团簇发生氧转移反应活性不同的原因是金属-氧键的强弱不同所致.  相似文献   

11.
在MP2/6-311++G(d,p)和QCISD(t)/6-311++G(3df,2p)(单点)水平下计算得到9个异构体和10个过渡态的HAsS2体系势能面.异构体cis-HSAsS(E1)的能量最低,其次是trans-HSAsS(E2)、具有AsSS三元环的立体HAs(S)S(Cs,E3)和HAs(S)S(C2v,E4)结构的异构体,能量分别比cis-HSAsS高1.46,60.78和93.63kJ/mol.根据体系的势能面,异构体E1,E2,E3和E4具有一定的动力学稳定性.AsH和S2第一步反应产物将会异构化为具有较高动力学稳定性的异构体E3,而SH和AsS第一步反应产物将会异构化为E1.计算结果与HNO2,HNS2,HPO2,HPS2和HAsO2等价电子相同的分子的势能面进行了比较.  相似文献   

12.
A quantum theory of atoms in molecules (QTAIM) charge-charge flux-dipole flux (CCFDF) decomposition of the MP2/6-311++G(3d,3p) level molecular dipole moment derivatives is reported for the cis-, trans-, and 1,1-difluoroethylenes and the cis- and trans-dichloroethylenes. Although the dipole moment derivatives and infrared fundamental intensities calculated at the MP2 level are overestimated for high-intensity bands corresponding to CF and CC stretching vibrations, the overall agreement is good with a root-mean-square (rms) error of 19.6 km mol-1 for intensities ranging from 0 to 217.7 km mol-1. The intensities calculated from the QTAIM/CCFDF model parameters are in excellent agreement with those calculated directly by the MP2/6-311++G(3d,3p) approach with only a 1.8 km mol-1 rms error. A high negative correlation (r=-0.91) is found between the charge flux and dipole flux contributions to the dipole moment derivatives. Characteristic values of charge, charge flux, and dipole flux contributions are found for CF, CCl, and CH stretching derivatives. The CH stretching derivatives provide especially interesting results with very high charge flux and dipole flux contributions with opposite signs. The charge, charge flux, and dipole flux contributions are found to be transferable from the cis to the trans isomers providing accurate predictions of the theoretical trans intensities with rms errors of 8.6 km mol-1 for trans-difluoroethylene and 5.9 km mol-1 for trans-dichloroethylene.  相似文献   

13.
采用DFT B3LYP和QCISD方法研究了不饱和类锗烯H2C=GeLiCl与RH(R=F, OH, NH2)的插入反应. 在B3LYP/6-311+G(d,p)水平上优化了反应势能面上的驻点构型. 结果表明, H2C=GeLiCl与HF、H2O 或NH3发生插入反应的机理相同. QCISD/6-311++G(d,p)//B3LYP/6-311+G(d,p)计算的三个反应的势垒分别为173.53、194.48和209.05 kJ·mol-1, 反应热分别为60.18、72.93和75.34 kJ·mol-1. 相同条件下发生插入反应时, 反应活性顺序都是H—F>H—OH>H—NH2.  相似文献   

14.
Electron capture dynamics of SO(2)-H(2)O(Ar)(n) complexes (n = 0-2) have been investigated by means of direct ab initio molecular dynamics (MD) method in order to elucidate the effects of solvent argon on the reaction dynamics of SO(2)-H(2)O. The neutral complex of SO(2)-H(2)O has a C(s) symmetry, and the sulfur of SO(2) interacts with the oxygen of H(2)O with an eclipsed form. In the SO(2)-H(2)O(Ar)(n) complexes, the dipole of H(2)O interacts with the argon atoms in the most stable structure. Following the electron capture of the complex SO(2)-H(2)O, the complex anion SO(2)(-)(H(2)O) is dissociated directly into SO(2)(-) + H(2)O. On the other hand, the electron capture of SO(2)(H(2)O)(Ar)(n) argon complex (n = 1-2) leads to the anion-water complex SO(2)(-)(H(2)O) because the collision of H(2)O with the Ar atom causes a rebound of H(2)O from Ar atom to the SO(2)(-) anion. The argon solvent enhanced the SO(2)(-)(H(2)O) complex formation. The reaction mechanism of SO(2)(H(2)O) in the participation of argon atoms was discussed on the basis of the present results.  相似文献   

15.
The cis/trans conformational equilibrium of N-methyl formamide (NMF) and the sterically hindered tert-butylformamide (TBF) was investigated by the use of variable temperature gradient 1H NMR in aqueous solution and in the low dielectric constant and solvation ability solvent CDCl3 and various levels of first principles calculations. The trans isomer of NMF in aqueous solution is enthalpically favored relative to the cis (deltaH(o) = -5.79 +/- 0.18 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = -0.23 +/- 0.17 kJ mol(-1)) playing a minor role. The experimental value of the enthalpy difference strongly decreases (deltaH(o) = -1.72 +/- 0.06 kJ mol(-1)), and the contribution of entropy at 298 K (298 x deltaS(o) = -1.87 +/- 0.06 kJ mol(-1)) increases in the case of the sterically hindered tert-butylformamide. The trans isomer of NMF in CDCl3 solution is enthalpically favored relative to the cis (deltaH(o) = -3.71 +/- 0.17 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = 1.02 +/- 0.19 kJ mol(-1)) playing a minor role. In the sterically hindered tert-butylformamide, the trans isomer is enthalpically disfavored (deltaH(o) = 1.60 +/- 0.09 kJ mol(-1)) but is entropically favored (298 x deltaS(o) = 1.71 +/- 0.10 kJ mol(-1)). The results are compared with literature data of model peptides. It is concluded that, in amide bonds at 298 K and in the absence of strongly stabilizing sequence-specific inter-residue interactions involving side chains, the free energy difference of the cis/trans isomers and both the enthalpy and entropy contributions are strongly dependent on the N-alkyl substitution and the solvent. The significant decreasing enthalpic benefit of the trans isomer in CDCl3 compared to that in H2O, in the case of NMF and TBF, is partially offset by an adverse entropy contribution. This is in agreement with the general phenomenon of enthalpy versus entropy compensation. B3LY/6-311++G** and MP2/6-311++G** quantum chemical calculations confirm the stability orders of isomers and the deltaG decrease in going from water to CHCl3 as solvent. However, the absolute calculated values, especially for TBF, deviate significantly from the experimental values. Consideration of the solvent effects via the PCM approach on NMF x H2O and TBF x H2O supermolecules improves the agreement with the experimental results for TBF isomers, but not for NMF.  相似文献   

16.
A conformational analysis was carried out on cis-6-chloro-9-[2-(2-hydroxyethyl)-2,3,5,6-tetrahydro-4H-pyran-3-yl]purine and several related model compounds at the HF/6-31++G(d,p) and B3LYP/6-311++G(2d,2p) levels, and also using the semiempirical methods AM1 and PM3. The result of this analysis shows that the molecule prefers an axial disposition of the purine ring, with an approximate cis orientation of C4-N9-C1′-H1′ dihedral angle. The stability of this conformation comes mainly from the formation of a C-H?O?H-O intramolecular three-center hydrogen bond. In this structure, the tetrahydropyran oxygen acts as an acceptor, while both H8 of the purine ring and the hydroxylic hydrogen of the hydroxyethyl group act as donors. Also, the equatorial disposition of the hydroxyethyl group in this conformer reduces its repulsions with the purine ring and the tetrahydropyran hydrogens. The quantum theory of atoms in molecules was applied to study the electronic effects produced by the conformational changes, bonding between tetrahydropyran and purine rings, chlorine substitution, and intramolecular hydrogen bonding.  相似文献   

17.
采用二阶微扰理论(MP2)计算方法,在6-31++G(d,p)的基组下,对气相中正丁烯负离子与N2O反应的微观机理进行了较为系统的理论计算研究,并在相同基组下进一步用QCISD方法在MP2优化的几何构型基础上做了单点能校正.计算结果表明,正丁烯负离子有顺式和反式异构体,它们的伯碳和仲碳都可以与N2O反应,前者的反应有α-H抽提、β-H抽提、基于IM11和氧抽提路径.而α-H抽提为主要反应路径,产物是丙烯基重氮甲基负离子(cis-CH3CHCHCN-N-,trans-CH3CHCHCNN-).后者的反应有甲基H抽提、乙烯基H抽提、基于IM12'和氧抽提路径,其中甲基H抽提为主反应路径,产物是丁二烯负离子,相比之下,在仲碳位置上的反应更有利一些.抽提氧的反应路径也是主反应的竞争路径,其产物应该能被检测到.此外,不管是主反应路径还是次反应路径都是强放热过程.  相似文献   

18.
1 INTRODUCTION 3-Hydroxy-2-methyl-4-pyranone (maltol) and 3-hydroxy-2-ethyl-4-pyranone (ethylmaltol) are nontoxic compounds that have been applied to bio- inorganic chemistry over several decades[1, 2]. Their iron(III) complexes are relevant to the control of iron levels in the human body. Such complexes have been assessed for the amelioration of anaemia[3] and their respective ligands have been tested for the removal of excess burdens of iron in diseases such as siderosis, haemochroma…  相似文献   

19.
Various high levels of theory (DFT, QCISD, BD(TQ), and CASSCF) have been applied to the characterization of two higher-lying biradicaloid singlet states of peroxynitrous acid. A singlet minimum (cis-2) was located that had an elongated O-O distance of 2.17 A and was only 14.4 kcal/mol [UB3LYP/6-311+G(3df,2p)] higher in energy than its cis-peroxynitrous acid ground-state precursor. A trans metastable higher-lying singlet (trans-2) was 12.8 kcal/mol higher in energy than ground-state HO-ONO. Complete active space calculations [CAS(12,10)/6-311+G(d,p)] predicted the optimized geometries of these cis and trans metastable singlets to be quite close to those obtained with the DFT method. Geometry optimization of both cis- and trans-2 within the COSMO solvent model suggest that both exist as energy minima in polar media with elongated O-O distances of 2.14 and 2.09 A. Both cis- and trans-2 exist as hydrogen-bonded complexes with several water molecules. These collective data suggest that solvated forms of cis-2.3H2O and trans-2.3H2O represent the elusive higher-lying biradicaloid minima that have been previously advocated (J. Am. Chem. Soc. 1996, 118, 3125) as the metastable forms of peroxynitrous acid (HOONO*).  相似文献   

20.
The MP2 method and the Pople-style basis sets 6-311++G(d,p), 6-311++G(2df,2pd), and 6-311++G(3df,3pd) were used to perform calculations on H3O+...C2H2 and C2H3+...C2H2 complexes and related species. Hydrogen bonds existing for the analyzed complexes were investigated as well as related pi-H...O --> pi...H-O and pi-H...pi --> pi...H-pi proton-transfer processes. For some of the complexes analyzed the multicenter pi-H interaction possessing the properties of a covalent bond acts as a proton donor; more generally it is classified as the Lewis acid. The quantum theory of "atoms in molecules" (QTAIM) was also applied to deepen the nature of these interactions in terms of characteristics of bond critical points. The pi-H...O, O-H...pi, and pi-H...pi interactions analyzed here may be classified as hydrogen bonds since their characteristics are the same as or at least similar to those of typical hydrogen bonds. H...pi interactions are common in crystal structures of organic and organometallic compounds. The analyses performed here show a continuum of such interactions since there are H...pi contacts possessing the characteristics of weak intermolecular interactions on the one hand and pi-H multicenter covalent bonds on the other. Ab initio and QTAIM results support the latter statements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号