首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of UO(2)(NO(3))(2).6H(2)O with Cs(2)CO(3) or CsCl, H(3)PO(4), and Ga(2)O(3) under mild hydrothermal conditions results in the formation of Cs(4)[(UO(2))(2)(GaOH)(2)(PO(4))(4)].H(2)O (UGaP-1) or Cs[UO(2)Ga(PO(4))(2)] (UGaP-2). The structure of UGaP-1 was solved from a twinned crystal revealing a three-dimensional framework structure consisting of one-dimensional (1)(infinity)[Ga(OH)(PO(4))(2)](4-) chains composed of corner-sharing GaO(6) octahedra and bridging PO(4) tetrahedra that extend along the c axis. The phosphate anions bind the UO(2)(2+) cations to form UO(7) pentagonal bipyramids. The UO(7) moieties edge-share to create dimers that link the gallium phosphate substructure into a three-dimensional (3)(infinity)[(UO(2))(2)(GaOH)(2)(PO(4))(4)](4-) anionic lattice that has intersecting channels running down the b and c axes. Cs(+) cations and water molecules occupy these channels. The structure of UGaP-2 is also three-dimensional and contains one-dimensional (1)(infinity)[Ga(PO(4))(2)](3-) gallium phosphate chains that extend down the a axis. These chains are formed from fused eight-membered rings of corner-sharing GaO(4) and PO(4) tetrahedra. The chains are in turn linked together into a three-dimensional (3)(infinity)[UO(2)Ga(PO(4))(2)](1-) framework by edge-sharing UO(7) dimers as occurs in UGaP-1. There are channels that run down the a and b axes through the framework. These channels contain the Cs(+) cations. Ion-exchange studies indicate that the Cs(+) cations in UGaP-1 and UGaP-2 can be exchanged for Ca(2+) and Ba(2+). Crystallographic data: UGaP-1, monoclinic, space group P2(1)/c, a = 18.872(1), b = 9.5105(7), c = 14.007(1) A, beta = 109.65(3)(o) , Z = 4 (T = 295 K); UGaP-2, triclinic, space group P, a = 7.7765(6), b = 8.5043(7), c = 8.9115(7) A, alpha = 66.642(1)(o), beta = 70.563(1)(o), gamma = 84.003(2)(o), Z = 2 (T = 193 K).  相似文献   

2.
The alkali metal and alkaline-earth metal uranyl iodates K(2)[(UO(2))(3)(IO(3))(4)O(2)] and Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) have been prepared from the hydrothermal reactions of KCl or BaCl(2) with UO(3) and I(2)O(5) at 425 and 180 degrees C, respectively. While K(2)[(UO(2))(3)(IO(3))(4)O(2)] can be synthesized under both mild and supercritical conditions, the yield increases from <5% to 73% as the temperature is raised from 180 to 425 degrees C. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), however, has only been isolated from reactions performed in the mild temperature regime. Thermal measurements (DSC) indicate that K(2)[(UO(2))(3)(IO(3))(4)O(2)] is more stable than Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) and that both compounds decompose through thermal disproportionation at 579 and 575 degrees C, respectively. The difference in the thermal behavior of these compounds provides a basis for the divergence of their preparation temperatures. The structure of K(2)[(UO(2))(3)(IO(3))(4)O(2)] is composed of [(UO(2))(3)(IO(3))(4)O(2)](2)(-) chains built from the edge-sharing UO(7) pentagonal bipyramids and UO(6) octahedra. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) consists of one-dimensional [(UO(2))(2)(IO(3))(2)O(2)](2)(-) ribbons formed from the edge sharing of distorted UO(7) pentagonal bipyramids. In both compounds the iodate groups occur in both bridging and monodentate binding modes and further serve to terminate the edges of the uranium oxide chains. The K(+) or Ba(2+) cations separate the chains or ribbons in these compounds forming bonds with terminal oxygen atoms from the iodate ligands. Crystallographic data: K(2)[(UO(2))(3)(IO(3))(4)O(2)], triclinic, space group P_1, a = 7.0372(5) A, b = 7.7727(5) A, c = 8.9851(6) A, alpha = 93.386(1) degrees, beta = 105.668(1) degrees, gamma = 91.339(1) degrees, Z = 1; Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), monoclinic, space group P2(1)/c, a = 8.062(4) A, b = 6.940(3) A, c = 21.67(1), beta= 98.05(1) degrees, Z = 4.  相似文献   

3.
The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.  相似文献   

4.
The new uranyl molybdate Ag(6)[(UO(2))(3)O(MoO(4))(5)] (1) with an unprecedented uranyl molybdate sheet has been synthesized at 650 degrees C. The structure (monoclinic, C2/c, a = 16.4508(14) A, b = 11.3236(14) A, c = 12.4718(13) A, beta = 100.014(4)(o), V = 2337.4(4) A(3), Z = 4) contains [(UO(2))(3)O(MoO(4))(5)] sheets composed of triuranyl [(UO(2))(3)O] clusters that are connected by MoO(4) tetrahedra. The topology of the uranyl molybdate sheet in 1 represents a major departure from sheets observed in other uranyl compounds. Of the approximately 120 known inorganic uranyl compounds containing sheets of polyhedra, 1 is the only structure that contains trimers of uranyl pentagonal bipyramids that are connected only by the sharing of vertexes with other polyhedra. The sheets are parallel to (001) and are linked by Ag cations.  相似文献   

5.
A new organically templated layered uranium phosphate fluoride, [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][(UO(2))(2)F(2)(HPO(4))(2)] has been synthesized by hydrothermal reaction of UO(3), H(3)PO(4), HF, and (CH(3))(2)NCH(2)CH(2)N(CH(3))(2) at 140 degrees C. [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][(UO(2))(2)F(2)(HPO(4))(2)] has a layered crystal structure consisting of seven-coordinated UO(5)F(2) pentagonal bipyramids and four-coordinated HPO(4) tetrahedra. Each anionic layer containing three-, four-, and six-membered rings is separated by [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)](2+) cations. The [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)](2+) cations may be readily exchanged with the M(2+) ions (M = Ba, Sr and Ca) in water to give high crystalline AE(UO(2))(2)(PO(4))(2).6H(2)O (AE = Ca, Sr, Ba).  相似文献   

6.
Two novel uranyl adipates are reported as synthesized via hydrothermal treatment of uranium oxynitrate and adipic acid. One-dimensional UO(2)(C(6)H(8)O(4))(H(2)O)(2) (1) [a = 9.6306(6) A, c = 11.8125(10) A, tetragonal, P4(3)2(1)2 (No. 96), Z = 4] consists of chains of (UO(2))O(4)(H(2)O)(2) hexagonal bipyramids tethered through a linear adipic acid backbone. Three-dimensional UO(2)(C(6)H(8)O(4)) (2) [a = 5.5835(12) A, b = 8.791(2) A, c = 9.2976(17) A, alpha = 87.769(9) degrees, beta = 78.957(8) degrees, gamma = 81.365(11) degrees, triclinic, P1 (No. 2), Z = 2] is produced by decreasing the hydration level of the reaction conditions. This structure contains a previously unreported [(UO(2))(2)O(8)] building unit cross-linked into a neutral metal-organic framework topology with vacant channels.  相似文献   

7.
The reaction of the molecular transition metal iodate, Cs[CrO(3)(IO(3))], with UO(3) under mild hydrothermal conditions provides access to a new low-dimensional, mixed-metal U(VI) compound, Cs(2)[(UO(2))(CrO(4))(IO(3))(2)] (1). The structure of 1 is quite unusual and consists of one-dimensional (1)(infinity)[(UO(2))(CrO(4))(IO(3))(2)](2-) ribbons separated by Cs(+) cations. These ribbons are formed from [UO(7)] pentagonal bipyramids that contain a uranyl core, [CrO(4)] tetrahedra, and both monodentate and bridging iodate anions. Crystallographic data: 1, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4 (T = 193 K).  相似文献   

8.
Eight uranyl compounds containing the dicarboxylate ligands iminodiacetate (IDA) or oxydiacetate (ODA) have been characterized in the solid state. The published polymeric structures for [UO(2)(C(4)H(6)NO(4))(2)] and [UO(2)(C(4)H(4)O(5))](n) have been confirmed, while Ba[UO(2)(C(4)H(5)NO(4))(2)] x 3H(2)O, [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][UO(2)(C(4)H(4)O(5))(2)] [orthorhombic space group Pnma, a = 10.996(5) A, b = 21.42(1) A, c = 8.700(3) A, Z = 4], and [C(2)H(5)NH(2)(CH(2))(2)NH(2)C(2)H(5)][UO(2)(C(4)H(4)O(5))(2)] [monoclinic space group P2(1)/n, a = 6.857(3) A, b = 9.209(5) A, c = 16.410(7) A, beta = 91.69(3), Z = 2] contain monomeric anions. The distance from the uranium atom to the central heteroatom (O or N) in the ligand varies. Crystallographic study shows that U-heteroatom (O/N) distances fall into two groups, one 2.6-2.7 A in length and one 3.1-3.2 A, the latter implying no bonding interaction. By contrast, EXAFS analysis of bulk samples suggests that either a long U-heteroatom (O/N) distance (2.9 A) or a range of distances may be present. Three possible structural types, two symmetric and one asymmetric, are identified on the basis of these results and on solid-state (13)C NMR spectroscopy. The two ligands in the complex can be 1,4,7-tridentate, giving five-membered rings, or 1,7-bidentate, to form an eight-membered ring. (C(4)H(12)N(2))[(UO(2))(2)(C(4)H(5)NO(4))(2)(OH)(2)] x 8H(2)O [monoclinic space group P2(1)/a, a = 7.955(9) A, b = 24.050(8) A, c = 8.223(6) A, beta = 112.24(6), Z = 2], (C(2)H(10)N(2))[(UO(2))(2)(C(4)H(5)NO(4))(2)(OH)(2)] x 4H(2)O, and (C(6)H(13)N(4))(2)[(UO(2))(2)(C(4)H(4)O(5))(2)(OH)(2)] x 2H(2)O [monoclinic space group C2/m, a = 19.024(9) A, b = 7.462(4) A, c = 2.467(6) A, beta = 107.75(4), Z = 4] have a dimeric structure with two capping tridentate ligands and two mu(2)-hydroxo bridges, giving edge-sharing pentagonal bipyramids.  相似文献   

9.
Two Np(5+) silicates, Li(6)(NpO(2))(4)(H(2)Si(2)O(7))(HSiO(4))(2)(H(2)O)(4) (LiNpSi1) and K(3)(NpO(2))(3)(SiO(3)OH)(2) (KNpSi1), were synthesized by hydrothermal methods. The crystal structures were determined using direct methods and refined on the basis of F(2) for all unique data collected with Mo Kalpha radation and an APEX II CCD detector. LiNpSi1 crystallizes in orthorhombic space group Pnma with a =13.189(6) A, b = 7.917(3) A, c = 10.708(5) A, V = 1118.1(8) A3, and Z = 2. KNpSi1 is hexagonal, P62m, a = 9.734(1) A, c = 3.8817(7) A, V = 318.50(8) A3, and Z = 1. LiNpSi1 contains chains of edge-sharing neptunyl pentagonal bipyramids linked into two-dimensional sheets through direct linkages between the neptunyl polyhedra and the vertex sharing of the silicate tetrahedra. The structure contains both sorosilicate and nesosilicate units, resulting in a new complex neptunyl silicate sheet. KNpSi1 contains edge-sharing neptunyl square bipyramids linked into a framework structure through the sharing of vertices with the silicate tetrahedra. The neptunyl silicate framework contains channels approximately 6.0 A in diameter. These structures exhibit significant departures from other reported Np(5+) and U(6+) compounds and represent the first reported Np(5+) silicate structures.  相似文献   

10.
Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO(3), UO(2)(CH(3)COO)(2)·2H(2)O, Re(2)O(7)(H(2)O)(2), and V(2)O(5) with CH(3)SO(3)H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO(2)(CH(3)SO(3))(2) (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm(3), Z=8) contains [MoO(2)] moieties connected by [CH(3)SO(3)] ions to form layers parallel to (100). UO(2)(CH(3)SO(3))(2) (P2(1)/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1)°, V=1.8937(3) nm(3), Z=8) consists of linear UO(2)(2+) ions coordinated by five [CH(3)SO(3)] ions, forming a layer structure. VO(CH(3)SO(3))(2) (P2(1)/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1)°, V=0.8290(2) nm(3), Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO(3)(CH(3)SO(3)) (P1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2)°, V=1.1523(4) nm(3), Z=8) a chain structure exhibiting infinite O-[ReO(2)]-O-[ReO(2)]-O chains is formed. Each [ReO(2)]-O-[ReO(2)] unit is coordinated by two bidentate [CH(3)SO(3)] ions. V(2)O(3)(CH(3)SO(3))(4) (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm(3), Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH(3)SO(3)] ligands. Additional methanesulfonate ions connect the [V(2)O(3)] groups along [001]. Thermal decomposition of the compounds was monitored under N(2) and O(2) atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N(2) the decomposition proceeds with reduction of the metal leading to the oxides MoO(2), U(3)O(7), V(4)O(7), and VO(2); for MoO(2)(CH(3)SO(3))(2), a small amount of MoS(2) is formed. If the thermal decomposition is carried out in a atmosphere of O(2) the oxides MoO(3) and V(2)O(5) are formed.  相似文献   

11.
The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta = 94.416(1) degrees, Z = 4.  相似文献   

12.
[Ag(UO(2))(3) (OAc)(9)][Zn(H(2)O)(4)(CH(3)CH(2)OH)(2)] (, OAc = CH(3)COO(-)) crystallized from an ethanol solution and its structure was determined by IR spectroscopy, elemental analysis, (1)H NMR, (13)C NMR and X-ray crystallography; it is composed of [Zn(H(2)O)(4)(CH(3)CH(2)OH)(2)](2+) cations and [Ag(UO(2))(3)(OAc)(9)](2-) anions in which triuranyl [(UO(2))(OAc)(3)](3) clusters are linked by the Ag ion.  相似文献   

13.
The synthesis and characterization of the novel systems [Zn(2)(H(2)N(CH(2))(2)NH(2))(5)][(Zn(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(H(2)O)].9H(2)O (1), [Cd(2)(H(2)N(CH(2))(2)NH(2))(5)][(Cd(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(Br)].9H(2)O (2), and [Zn(2)(H(2)N(CH(2))(2)NH(2))(5)][(Zn(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(Cl)].9H(2)O (3) have been described. These materials represent a new class of solids that have been prepared by combining conventional coordination compounds with spherical polyoxovanadate clusters. The isomorphous structures of these hybrid solids consist of two-dimensional arrays of container cluster molecules [V(18)O(42)(X)] (X = H(2)O, Br-, Cl-) interlinked by the transition metal complex moieties [M(H(2)N(CH(2))(2)NH(2))(2)] (M = Zn, Cd). These compounds contain an unprecedented complex cation, [M(2)(H(2)N(CH(2))(2)NH(2))(5)](4+). Crystal data for 1: C(9)H(46)N(9)O(26)V(9)Zn(2), monoclinic space group P2(1)/m (No. 11), a = 12.3723(7) A, b = 20.9837(11) A, c = 15.8379(8) A, beta = 97.3320(10) degrees, Z = 4.  相似文献   

14.
Two new layered uranyl selenites, [C(4)H(12)N(2)](0.5)[UO(2)(HSeO(3))(SeO(3))] (1) and [C(6)H(14)N(2)](0.5)[UO(2)(HSeO(3))(SeO(3))].0.5H(2)O.0.5CH(3)CO(2)H (2), have been isolated from mild hydrothermal reactions. The preparation of 1 was achieved by reacting UO(2)(C(2)H(3)O(2))(2).2H(2)O with H(2)SeO(4) in the presence of piperazine at 130 degrees C for 2 d. Crystals of 2 were synthesized by reacting UO(2)(C(2)H(3)O(2))(2).2H(2)O, H(2)SeO(4), and 1,4-diazabicyclo[2.2.2]octane at 150 degrees C for 2 d. The structure of 1 consists of UO(2)(2+) cations that are bound by bridging HSeO(3)(-) anions and chelating/bridging SeO(3)(2)(-) anions to yield UO(7) pentagonal bipyramids. The joining of the uranyl moieties by the hydrogen selenite and selenite anions creates two-dimensional 2(infinity) [UO(2)(HSeO(3))(SeO(3))](-) layers that extend in the bc-plane. The stereochemically active lone pair of electrons on the HSeO(3)(-) and SeO(3)(2)(-) anions align along the a-axis making each layer polar. The 2(infinity)[UO(2)(HSeO(3))(SeO(3))](-) layers and piperazinium cations stack in a AA'BAA'B sequence where two layers stack on one another without intervening piperazinium cations. While each 2(infinity)[UO(2)(HSeO(3))(SeO(3))](-) layer is polar, in the AA' stacking, the polarity of the second sheet is reversed with respect to the first, yielding an overall structure that is centrosymmetric. The structure of 2 is constructed from uranyl cations that are bound by three bridging SeO(3)(2)(-) and two bridging HSeO(3)(-) anions to create UO(7) pentagonal bipyramids. The linking of the uranyl cations by the HSeO(3)(-) and SeO(3)(2-) anions creates 2(infinity)[UO(2)(HSeO(3))(SeO(3))](-) layers that extend in the ac-plane. In 1 and 2, the organic ammonium cations form hydrogen bonds with the anionic uranyl selenite layers. Crystallographic data: 1, monoclinic, space group P2(1)/c, a = 10.9378(5) A, b = 8.6903(4) A, c = 9.9913(5) A, beta = 90.3040(8) degrees, Z = 4; 2, orthorhombic, space group Pnma, a = 13.0858(8) A, b = 17.555(1) A, c = 10.5984(7) A, Z = 8.  相似文献   

15.
Song HH  Zheng LM  Wang Z  Yan CH  Xin XQ 《Inorganic chemistry》2001,40(19):5024-5029
Four new zinc diphosphonate compounds with formulas [NH(3)(CH(2))(2)NH(3)]Zn(hedpH(2))(2).2H(2)O, 1, [NH(3)(CH(2))(n)()NH(3)]Zn(2)(hedpH)(2).2H(2)O, (n = 4, 2; n = 5, 3; n = 6, 4) (hedp = 1-hydroxyethylidenediphosphonate) have been synthesized under hydrothermal conditions at 110 degrees C and in the presence of alkylenediamines NH(2)(CH(2))(n)()NH(2) (n = 2, 4, 5, 6). Crystallographic data for 1: monoclinic, space group C2/c, a = 24.7422(15), b = 5.2889(2), c = 16.0338(2) A, beta = 117.903(1) degrees, V = 1856.17(18) A(3), Z = 4; 2: monoclinic, space group P2(1)/n, a = 5.4970(3), b = 12.1041(6), c = 16.2814(12) A, beta = 98.619(5) degrees, V = 1071.07(11) A(3), Z = 2; 3: monoclinic, space group P2(1)/n, a = 5.5251(2), b = 12.5968(3), c = 16.1705(5) A, beta = 99.182(1) degrees, V = 1111.02(6) A(3), Z = 2; 4: triclinic, space group P-1, a = 5.4785(2), b = 14.1940(5), c = 16.0682(6) A, alpha = 81.982(2) degrees, beta = 89.435(2) degrees, gamma = 79.679(2) degrees, V = 1217.11(8) A(3), Z = 2. In compound 1, two of the phosphonate oxygens are protonated. The metal ions are bridged by the hedpH(2)(2-) groups through three of the remaining four phosphonate oxygens, forming a one-dimensional infinite chain. The protonated ethylenediamines locate between the chains in the lattice. In compounds 2-4, only one phosphonate oxygen is protonated. Compounds 2 and 3 have a similar three-dimensional open-network structure composed of [Zn(2)(hedpH)(2)](n) double chains with strong hydrogen bonding interactions between them, thus generating channels along the [100] direction. The protonated diamines and water molecules reside in the channels. Compound 4 contains two types of [Zn(2)(hedpH)(2)](n) double chains which are held together by strong hydrogen bonds, forming a two-dimensional network. The interlayer spaces are occupied by the [NH(3)(CH(2))(6)NH(3)](2+) cations and water molecules. The significant difference between structures 2-4 is also featured by the coordination geometries of the zinc atoms. The geometries of those in 2 can be described as distorted octahedral, and those in 3 as distorted square pyramidal. In 4, two independent zinc atoms are found, each with a distorted octahedral and a tetrahedral geometry, respectively.  相似文献   

16.
The open-framework uranium fluorosilicate [(CH3)4N][(C5H5NH)0.8((CH3)3NH)0.2]U2Si9O23F4 (USH-8) has been synthesized hydrothermally by using tetramethylammonium hydroxide and pyridine-HF. The compound has a framework composition U2Si9O23F4 based on silicate double layers that are linked by chains of UO3F4 pentagonal bipyramids. The framework has 12-ring channels along [010] and 7-ring channels along [100]. The [010] 12-ring channels have a calabash-shape with the middle part partially blocked by the uranyl oxygen atoms. The narrow side of the 12-ring channels is occupied by well-ordered TMA cations while the wide side is occupied by disordered pyridinium and trimethylammonium cations.  相似文献   

17.
[NH(4)](2)Mn(3)(H(2)O)(4)[Mo(CN)(7)](2).4H(2)O (1) has been synthesized by slow diffusion of aqueous solutions containing K(4)[Mo(CN)(7)].2H(2)O, [Mn(H(2)O)(6)](NO(3))(2), and (NH(4))NO(3). Compound 1 crystallizes in the monoclinic C2/c space group. The basic motif of the three-dimensional structure consists of a Mo1-Mn1 gridlike sheet parallel to the bc plane. Two of these sheets are connected through CN-Mn2-NC linkages to form a bilayer reminiscent of the K(2)Mn(3)(H(2)O)(6)[Mo(CN)(7)](2).6H(2)O (2) two-dimensional structure. In 1, [NH(4)](+) cations allow these bilayers to be connected through direct Mo1-CN-Mn1 bridges to form a three-dimensional network, whereas in 2, they are isolated by (H(2)O)K(+) cations. As shown by the magnetic measurements, this increase of dimensionality by counterion substitution induces an enhancement of the ferrimagnetic critical temperature from 39 K in 2 to 53 K in 1.  相似文献   

18.
The sulfates Nb(2)O(2)(SO(4))(3), MoO(2)(SO(4)), WO(SO(4))(2,) and two modifications of Re(2)O(5)(SO(4))(2) have been synthesized by the solvothermal reaction of NbCl(5), WOCl(4), Re(2)O(7)(H(2)O)(2), and MoO(3) with sulfuric acid/SO(3) mixtures at temperatures between 200 and 300 °C. Besides the X-ray crystal structure determination of all compounds, the thermal behavior was investigated using thermogravimetric studies. WO(SO(4))(2) (monoclinic, P2(1)/n, a = 7.453(1) ?, b = 11.8232(8) ?, c = 7.881(1) ?, β = 107.92(2)°, V = 660.7(1) ?(3), Z = 4) and both modifications of Re(2)O(5)(SO(4))(2) (I: orthorhombic, Pba2, a = 9.649(1) ?, b = 8.4260(8) ?, c = 5.9075(7) ?, V = 480.27(9) ?(3), Z = 2; II: orthorhombic, Pbcm, a = 7.1544(3) ?, b = 7.1619(3) ?, c = 16.8551(7) ?, V = 863.64(6) ?(3), Z = 4) are the first structurally characterized examples of tungsten and rhenium oxide sulfates. Their crystal structure contains layers of sulfate connected [W═O] moieties or [Re(2)O(5)] units, respectively. The cohesion between layers is realized through weak M-O contacts (343-380 pm). Nb(2)O(2)(SO(4))(3) (orthorhombic, Pna2(1), a = 9.9589(7) ?, b = 11.7983(7) ?, c = 8.6065(5) ?, V = 1011.3(1) ?(3), Z = 4) represents a new sulfate-richer niobium oxide sulfate. The crystal structure contains a three-dimensional network of sulfate connected [Nb═O] moieties. In MoO(2)(SO(4)) (monoclinic, I2/a, a = 8.5922(6) ?, b = 12.2951(6) ?, c = 25.671(2) ?, β = 94.567(9)°, V = 2703.4(3) ?(3), Z = 24) [MoO(2)] units are connected through sulfate ions to a three-dimensional network, which is pervaded by channels along [100] accommodating the terminal oxide ligands. In all compounds except WO(SO(4))(2), the metal ions are octahedrally coordinated by monodentate sulfate ions and oxide ligands forming short M═O bonds. In WO(SO(4))(2), the oxide ligand and two monodentate and two bidentate sulfate ions build a pentagonal bipyramid around W. The thermal stability of the sulfates decreases in the order Nb > Mo > W > Re; the residues formed during the decomposition are the corresponding oxides.  相似文献   

19.
Six new metal-organic coordination networks based on linking unit 2,5-bis(4-pyridyl)-1,3,4-thiadiazole (L(1)) or 2,5-bis(3-pyridyl)-1,3,4-oxadiazole (L(3)) and inorganic Cu(II), Cd(II), and Co(II) salts have been prepared and structurally characterized by single-crystal X-ray analysis. Using L(1) to react with three different Cu(II) salts, Cu(OAc)(2).H(2)O, Cu(NO(3))(2).3H(2)O, and CuSO(4).5H(2)O, respectively, two different one-dimensional (1-D) coordination polymers, [[Cu(2)L(1)(mu-OAc)(4)](CHCl(3))(2)](n) (1) [triclinic, space group P1, a = 7.416(3) A, b = 8.207(3) A, c = 14.137(5) A, alpha = 100.333(7) degrees, beta = 105.013(6) degrees, gamma = 94.547(6) degrees, Z = 1] and [[CuL(1)(NO(3))(2)](CHCl(3))(0.5)](n) (2) [monoclinic, space group C2/c, a = 28.070(8) A, b = 9.289(3) A, c = 15.235(4) A, beta = 113.537(5) degrees, Z = 8], and a chiral 3-D open framework, [[CuL(1)(H(2)O)(SO(4))](H(2)O)(2)](n) (3) [orthorhombic, space group P2(1)2(1)2(1), a = 5.509(2) A, b = 10.545(4) A, c = 29.399(11) A, Z = 4], were obtained. Reaction of L(1) and Cd(ClO(4))(2).6H(2)O or Co(ClO(4))(2).6H(2)O, in the presence of NH(4)SCN, yielded another 3-D open framework, [[CdL(1)(NCS)(2)](CH(3)OH)(1.5)](n) (4) [monoclinic, space group C2/c, a = 28.408(10) A, b = 9.997(5) A, c = 7.358(4) A, beta = 99.013(8) degrees, Z = 4], or a 2-D network, [[Co(L(1)())(2)(NCS)(2)](H(2)O)(2.5)](n) (5) [orthorhombic, space group Pnna, a = 22.210(5) A, b = 12.899(3) A, c = 20.232(4) A, Z = 4]. When L(1) was replaced by L(3) to react with Co(ClO(4))(2).6H(2)O and NH(4)SCN, another 2-D coordination polymer, [Co(L(3))(2)(NCS)(2)](n) (6) [monoclinic, space group P2(1)/c, a = 8.120(3) A, b = 9.829(4) A, c = 17.453(6) A, beta = 103.307(6) degrees, Z = 2], was constructed. These results indicate that the nature of the ligands, metal centers, or counteranions plays the critical role in construction of these novel coordination polymers. The interesting porous natures of two 3-D open frameworks 3 and 4 were investigated by TGA and XPRD techniques, and the magnetic properties of the Cu(II) and Co(II) complexes were studied by variable-temperature magnetic susceptibility and magnetization measurements.  相似文献   

20.
Compounds NDUF-1 ([C(6)H(14)N(2)](UO(2))(2)F(6); P2(1)/c, a = 6.9797(15) A, b = 8.3767(15) A, c = 23.760(5) A, beta = 91.068(4) degrees, V = 1388.9(5) A(3), Z = 4), NDUF-2 ([C(6)H(14)N(2)](2)(UO(2))(2)F(5)UF(7).H(2)O), NDUF-3 ((NH(4))(7)U(6)F(31); R3, a = 15.4106(8) A, c = 10.8142(8) A, V = 2224.1(2) A(3), Z = 3), and NDUF-4 ([NH(4)]U(3)F(13)) have been synthesized hydrothermally from fixed composition reactant mixtures over variable time periods [DABCO (C(6)H(12)N(2)), UO(2)(NO(3))(2).6H(2)O, HF, and H(2)O; 2-14 days]. Observed is a systematic evolution of the structural building units within these materials from the UO(2)F(5) pentagonal bipyramid in NDUF-1 and -2 to the UF(8) trigonal prism in NDUF-2 and finally to the UF(9) polyhedron in NDUF-3 and -4 as a function of reaction time. Coupled to this coordination change is a reduction of U(VI) to U(IV) as well as a breakdown of the organic structure-directing agent from DABCO to NH(4)(+). These processes contribute to a structural transition from layered topologies (NDUF-1) to chain (NDUF-2), back to layered (NDUF-3), and ultimately to framework (NDUF-4) connectivities. The synthesis conditions, crystal structures, and possible transformation mechanisms within this system are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号