首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 1/2V2O5-H2C2O4/H3PO4/NH4OH system was investigated using hydrothermal techniques. Four new phases, (NH4)VOPO(4).1.5H2O (1), (NH4)0.5VOPO(4).1.5H2O (2), (NH4)2[VO(H2O)3]2[VO(H2O)][VO(PO4)2]2.3H2O (3), and (NH4)2[VO(HPO4)]2(C2O4).H2O (4), have been prepared and structurally characterized. Compounds 1 and 2 have layered structures closely related to VOPO(4).2H2O and A0.5VOPO4.yH2O (A = mono- or divalent metals), whereas 3 has a 3D open-framework structure. Compound 4 has a layered structure and contains both oxalate and phosphate anions coordinated to vanadium cations. Crystal data: (NH4)VOPO(4).1.5H2O, tetragonal (I), space group I4/mmm (No. 139), a = 6.3160(5) A, c = 13.540(2) A, Z = 4; (NH4)0.5VOPO(4).1.5H2O, monoclinic, space group P2(1)/m (No. 11), a = 6.9669(6) A, b = 17.663(2) A, c = 8.9304(8) A, beta = 105.347(1) degrees, Z = 8; (NH4)2[VO(H2O)3]2[VO(H2O)][VO(PO4)2]2.3H2O, triclinic, space group P1 (No. 2), a = 10.2523(9) A, b = 12.263(1) A, c = 12.362(1) A, alpha = 69.041(2) degrees, beta = 65.653(2) degrees, gamma = 87.789(2) degrees, Z = 2; (NH4)2[VO(HPO4)]2(C2O4).5H2O, monoclinic (C), space group C2/m (No. 12), a = 17.735(2) A, b = 6.4180(6) A, c = 22.839(2) A, beta = 102.017(2) degrees, Z = 6.  相似文献   

2.
在溶剂热体系中,以N,N-二乙基乙二胺为结构导向剂,合成了Al/P为3/4的层状磷酸铝[Al6P8O32][(C2H5)2NHCH2CH2NH3]2·[C2H5NH2CH2CH2NH2C2H5]单晶,并通过X射线单晶衍射结构分析.XRD,ICP,元素分析,差热-热重分析等手段进行了表征.该化合物属单斜晶系,P2(1)/c空间群,晶胞参数:a=0.90945(2)nm,b=1.46424(4)nm,c=1.87572(5)nm,β=102.672(2)°,Z=4.其阴离子层由AlO4四面体和PO3(=O)四面体单元交替连接构成,形成四、六、八元环拓扑结构,无机层以ABAB方式堆积,两种质子化的有机胺分子N,N-二乙基乙二胺及其重排产物N,N′-二乙基乙二胺填充在层间.用分子动力学模拟方法,考察了标题化合物中有机胺与无机层间的相互作用,讨论了这两种有机胺的共模板作用.  相似文献   

3.
Four new layered mixed-valence vanadium oxides, which contain interlamellar organic cations, alpha-(H(3)N(CH(2))(2)NH(3))[V(4)O(10)] (1a), beta-(H(3)N(CH(2))(2)NH(3))[V(4)O(10)] (1b), alpha-(H(2)N(C(2)H(4))(2)NH(2))[V(4)O(10)] (2a), and beta-(H(2)N(C(2)H(4))(2)NH(2))[V(4)O(10)] (2b), have been prepared under hydrothermal conditions and their single-crystal structures determined: 1a, triclinic, space group P&onemacr;, a = 6.602(2) ?, b = 7.638(2) ?, c = 5.984(2) ?, alpha = 109.55(3) degrees, beta = 104.749(2) degrees, gamma = 82.31(3) degrees, Z = 1; 1b, triclinic, P&onemacr;, a = 6.387(1) ?, b = 7.456(2) ?, c = 6.244(2) ?, alpha = 99.89(2) degrees, beta = 102.91(2) degrees, gamma = 78.74(2) degrees, Z = 1; 2a, triclinic, P&onemacr;, a = 6.3958(5) ?, b = 8.182(1) ?, c = 6.3715(7) ?, alpha = 105.913(9) degrees, beta = 104.030(8) degrees, gamma = 94.495(8) degrees, Z = 1; 2b, monoclinic, space group P2(1)/n, a = 9.360(2) ?, b = 6.425(3) ?, c = 10.391(2) ?, beta = 105.83(1) degrees, Z = 2. All four of the compounds contain mixed-valence V(5+)/V(4+) vanadium oxide layers constructed from V(5+)O(4) tetrahedra and pairs of edge-sharing V(4+)O(5) square pyramids with protonated organic amines occupying the interlayer space.  相似文献   

4.
The room-temperature syntheses and single-crystal structures of C(4)N(2)H(12).NH(4)Cl(3).H(2)O and C(6)N(2)H(14).NH(4)Cl(3) are reported. These novel molecular perovskites contain vertex-sharing octahedral (NH(4))Cl(6) arrays which replicate the octahedral packing in the cubic (SrTiO(3)) and 2-H hexagonal (BaNiO(3)) perovskite structures, respectively. The structures are completed by doubly protonated organic cations and, for the cubic phase, water molecules. Crystal data: C(4)N(2)H(12).NH(4)Cl(3).H(2)O, M(r) = 230.56, orthorhombic, Pbcm (No. 57), a = 6.5279(13) A, b = 12.935(3) A, c = 12.849(3) A, V = 1085.0(4) A(3), Z = 4; C(6)N(2)H(14).NH(4)Cl(3), M(r) = 238.59, trigonal, Pthremacr;c1 (No. 165), a = 16.1616(2) A, c = 22.3496(4) A, V = 5055.5(2) A(3), Z = 18.  相似文献   

5.
Zhou D  Chen L  Yu J  Li Y  Yan W  Deng F  Xu R 《Inorganic chemistry》2005,44(12):4391-4397
A new three-dimensional open-framework aluminophosphate (NH(4))(2)Al(4)(PO(4))(4)(HPO(4)).H(2)O (denoted AlPO-CJ19) with an Al/P ratio of 4/5 has been synthesized, using pyridine as the solvent and 2-aminopyridine as the structure-directing agent, under solvothermal conditions. The structure was determined by single-crystal X-ray diffraction and further characterized by solid-state NMR techniques. The alternation of the Al-centered polyhedra (including AlO(4), AlO(5), and AlO(6)) and the P-centered tetrahedra (including PO(4) and PO(3)OH) results in an interrupted open-framework structure with an eight-membered ring channel along the [100] direction. This is the first aluminophosphate containing three kinds of Al coordinations (AlO(4), AlO(5), and AlO(6)) with all oxygen vertexes connected to framework P atoms. (27)Al MAS NMR, (31)P MAS NMR, and (1)H --> (31)P CPMAS NMR characterizations show that the solid-state NMR techniques are an effective complement to XRD analysis for structure elucidation. Furthermore, all of the possible coordinations of Al and P in the aluminophosphates with an Al/P ratio of 4/5 are summarized. Crystal data: (NH(4))(2)Al(4)(PO(4))(4)(HPO(4))xH(2)O, monoclinic P2(1) (No. 4), a = 5.0568(3) A, b = 21.6211(18) A, c = 8.1724(4) A, beta = 91.361(4) degrees , V = 893.27(10) A(3), Z = 2, R(1) = 0.0456 (I > 2 sigma(I)), and wR(2) = 0.1051 (all data).  相似文献   

6.
FT IR and FT Raman spectra of Ag3(PO2NH), (Compound 1), Na3(PO2NH)3 x H2O (Compound II), Na3(PO2NH)3 x 4H2O (Compound III), [C(NH2)3]3(PO2NH)3 x H2O (Compound IV) and (NH4)4(PO2NH)4 x 4H2O (Compound V) are recorded and analyzed on the basis of the anions, cations and water molecules present in each of them. The PO2NH- anion ring in compound I is distorted due to the influence of Ag+ cation. Wide variation in the hydrogen bond lengths in compound III is indicated by the splitting of the v2 and v3 modes of vibration of water molecules. The NH4 ion in compound V occupies lower site symmetry and exhibits hindered rotation in the lattice. The correlations between the symmetric and asymmetric stretching vibrations of P-N-P bridge and the P-N-P bond angle have also been discussed.  相似文献   

7.
Lei C  Mao JG  Sun YQ  Song JL 《Inorganic chemistry》2004,43(6):1964-1968
Hydrothermal reaction of H(3)PO(3), CH(3)NH(2), zinc(II) acetate, 4,4'-bipyridine (bipy), and (NH(4))(6)Mo(7)O(24).4H(2)O at 180 degrees C led to a novel organic-inorganic layered hybrid, [CH(3)NH(3)][H(2)bipy][Zn(4)(bipy)(3)(H(2)O)(2)Mo(V)(8)Mo(VI)O(36)(PO(4))].4H(2)O (1). Its structure was established by single-crystal X-ray diffraction. It crystallizes in the monoclinic space group P2(1)/c with cell parameters of a = 17.3032(2), b = 17.8113(3), and c = 23.4597 (4) A, beta = 106.410(1) degrees, V = 6935.6(2) A(3), and Z = 4. The structure of compound 1 features a novel 2D layer built from the 8e-reduced tetracapped Keggin [Zn(4)Mo(12)O(36)(PO(4))](3)(-) anions, which are further interconnected by bridging bipy ligands. The four zinc(II) ions are in tetrahedral, trigonal bipyramidal, and octahedral coordination geometries, respectively.  相似文献   

8.
Zhang M  Zhou D  Li J  Yu J  Xu J  Deng F  Li G  Xu R 《Inorganic chemistry》2007,46(1):136-140
A new two-dimensional-layered fluoroaluminophosphate (C4H11NOH)3.5[Al4(PO4)5F] x 0.5H3O (denoted as AlPO-CJ20) with an Al/P ratio of 4:5 has been synthesized solvothermally by using 2-amino-2-methyl-1-propanol as the structure-directing agent. Its structure was determined by single-crystal X-ray diffraction analysis and further characterized by solid-state NMR techniques, including 27Al, 19F --> 27Al cross-polarization, and 31P magic angle spinning NMR. The alternation of Al-centered tetrahedra (AlO4 and AlO3F) and PO3(=O) tetrahedra gives rise to a new type of 4.6.16-net sheet. The inorganic sheets are stacked in an ABAB sequence along the [010] direction and further held together through strong H bonds between protonated template molecules and P=O groups in the inorganic layers. Except for Mu-4, AlPO-CJ20 is the second layered aluminophosphate with an Al/P ratio of 4:5, and it contains the largest pore opening of 16-rings in the known layered aluminophosphates. Furthermore, the coordination of Al and P of fluoroaluminophosphates is summarized. Crystal data: (C4H11NOH)3.5[Al4(PO4)5F] x 0.5H3O, monoclinic, C2/c (No. 15), a = 32.678(7) A, b = 12.956(3) A, c = 21.045(4) A, beta = 115.17(3) degrees, V = 8064(3) A3, Z = 8, R1 = 0.0837 [I > 2sigma(I)], and wR2 = 0.2428 (all data).  相似文献   

9.
Shi L  Li J  Yu J  Li Y  Ding H  Xu R 《Inorganic chemistry》2004,43(8):2703-2707
A new manganese(II)-substituted aluminophosphate, [C(6)N(2)H(14)]0.5.[MnAl(3)(PO(4))(4)(H(2)O)(2)], denoted as MnAPO-14, has been synthesized hydrothermally in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as the structure-directing agent. Its structure is determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, and TG analyses. The structure of MnAPO-14 is built up by MnO(4)(H(2)O)(2) octahedra, AlO(4) tetrahedra, and PO(4) tetrahedra via Al-O-P and Mn-O-P linkages. Its framework is analogous to that of aluminophosphate zeotype AFN in which 25% of the aluminum sites are replaced by Mn(II) atoms. The diprotonated DABCO cations reside in the eight-membered ring channels. Computational simulations indicate that the substitution site of Mn to Al is determined by the host-guest interaction. Crystal data: [C(6)N(2)H(14)]0.5.[MnAl(3)(PO(4))(4)(H(2)O)(2)], triclinic P1 (No. 2), a = 9.5121(4) A, b = 9.8819(3) A, c = 12.1172(4) A, alpha = 70.533(2) degrees, beta = 73.473(2) degrees, gamma = 82.328(2) degrees, Z = 2, R(1) = 0.0586 (I > 2 sigma(I)), and wR(2) = 0.1877 (all data).  相似文献   

10.
A new three-dimensional open-framework cobalt(Ⅱ)-tungsten(Ⅵ) phosphate,[H3NCH2CH2NH3]3·[Co3W4P4O28](1) has been synthesized from the reaction of CoCl2·6H2O,WO3,H3PO4,ethylenediamine and H2O.The title compound was fully characterized by infrared spectroscopy,elemental analysis,magnetic properties,thermogravimetric analysis,XPS and single-crystal X-ray diffraction.The compound crystallized in a tetragonal space group I4(1)/a with a=1.7118(4) nm,c=1.0773(2) nm,V =3.1568(11) nm3,Z =4.  相似文献   

11.
New ethylenediphosphonates of molybdenum, A[Mo2O5(O3PCH2CH2PO3)] (A = NH4 (1), Tl (2), Cs (3), Rb (4)), and K(H3O)[Mo2O5(O3PCH2CH2PO3)] (5), have been synthesized by a hydrothermal method and structurally characterized by X-ray diffraction, spectroscopic, and thermal studies. These compounds consist of pillared anionic layers [Mo2O5(O3PCH2CH2PO3)]2-, with A+, K+, and H3O+ ions in the interlayer region as well as in the cavities within the anionic layers. Single-crystal X-ray structures of compounds 1 and 5 have been determined. They crystallize in the orthorhombic space group Cmca with Z = 8 and have the following unit cell parameters. For 1, a = 25.60(1), b = 10.016(4), and c = 9.635(3) angstroms and for 5, a = 25.63(1), b = 10.007(2), and c = 9.512(1) angstroms.  相似文献   

12.
Guo M  Yu J  Li J  Li Y  Xu R 《Inorganic chemistry》2006,45(8):3281-3286
The first two low-dimensional beryllium phosphates, [C5H14N2]2[Be3(HPO4)5].H2O (BePO-CJ29) and [C6H18N2]0.5[Be2(PO4)(HPO4)OH].0.5 H2O (BePO-CJ30), have been successfully synthesized under mild hydrothermal/solvothermal conditions. BePO-CJ29 is built up from strict alternation of BeO4 and HPO4 tetrahedra forming a unique one-dimensional double chains with 12-ring apertures. There are pseudo-10-ring apertures enclosed by two double chains through H-bonds. BePO-CJ29 can also be viewed as a pseudo 2-D layered structure stabilized by strong H-bonds. The diprotonated 2-methylpiperazium cations are located at three positions (i.e., inside the 12-ring aperture, inside the pseudo-10-ring aperture, and in the interlayer of the inorganic pseudo-layers. BePO-CJ30 is constructed by the alternation of Be-centered tetrahedra (including BeO4 and HBeO4) and P-centered tetrahedra (including PO4 and HPO4) resulting in a two-dimensional layered structure parallel to the (0 1 1) direction. The complex layer is composed of coupled 4.8 net sheets. The diprotonated 1,6-hexandiamine cations and water molecules reside in the interlayer regions and interact with the inorganic layers through H-bonds. Crystal data are as follows: [C5H14N2]2[Be3(HPO4)5].H2O (BePO-CJ29), triclinic, P1 (No. 2), a = 8.1000(9) A, b = 8.4841(14) A, c = 19.665(2) A, alpha = 89.683(10) degrees, beta = 78.182(8) degrees, gamma = 87.932(9) degrees, V = 1321.9(3) A3, Z = 2, R1 = 0.0523 (I > 2sigma(I)), and wR2 = 0.1643 (all data); [C6H18N2]0.5[Be2(PO4)(HPO4)OH].0.5 H2O (BePO-CJ30), orthorhombic, Pccn (No. 56), a = 26.01(4) A, b = 8.431(12) A, c = 9.598(13) A, V = 2105(5) A3, Z = 8, R1 = 0.0833 (I > 2sigma(I)), and wR2 = 0.2278 (all data).  相似文献   

13.
Wang Y  Yu J  Pan Q  Du Y  Zou Y  Xu R 《Inorganic chemistry》2004,43(2):559-565
A 0D vanadium borophosphate [Co(en)(3)](2)[V(3)P(3)BO(19)][H(2)PO(4)].4H(2)O (1) and two 1D vanadium oxides [Co(en)(3)][V(3)O(9)].H(2)O (2) and [Co(dien)(2)][V(3)O(9)].H(2)O (3) have been synthesized hydrothermally from the reaction mixture of V(2)O(5)-H(3)PO(4)-H(3)BO(3)-CoCl(2)-R-H(2)O at 110 degrees C (R: en or dien). The complex cations Co(en)(3)(3+) and Co(dien)(2)(3+) are cooperatively organized in the reaction medium to play a structure-directing role in the formation of the inorganic clusters and chains. The structures are determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, and TG analyses. The structure of 1 contains isolated [V(3)P(3)BO(19)](5)(-) cluster anions, H(2)PO(4)(-) anions, racemic Co(en)(3)(3+) cations, and H(2)O molecules, which form a complex H-bond network. 2 and 3 both contain chains of corner-sharing VO(4) tetrahedra running along the 2(1) screw axis. The complex cations located in the interchain region interact with the chains through H-bonds. 2 is crystallized in an enantiomorphic space group and only one enantiomer of Co(en)(3)(3+) is involved in the structure. Crystal data: 1, monoclinic, C2/c, a = 32.8492(14) A, b = 11.9601(3) A, c = 22.6001(7) A, beta = 108.9630(8) degrees, Z = 8; 2, orthorhombic, P2(1)2(1)2(1), a = 8.1587(16) A, b = 12.675(3) A, c = 18.046(4) A, Z = 4; 3, monoclinic, P2(1)/c, a = 16.1663(10) A, b = 8.7028(3) A, c = 13.9773(5) A, beta = 103.1340(18) degrees, Z = 4.  相似文献   

14.
傅瑞标  吴新涛  胡胜民  王龙胜 《结构化学》2004,23(10):1107-1110
1 INTRODUCTION Metal organophosphonates have attracted considerable attention for over three decades due to their potential or practical applications, include- ing ion exchanges[1, 2], molecular sensors[3] and optics[4, 5]. Recently, a number of porous m…  相似文献   

15.
Two new isostructural mixed-metal phosphates, BaTeMO(4)(PO(4)) (M = Nb(5+) or Ta(5+)), have been synthesized as bulk phase powders and single crystals by standard solid-state techniques using BaCO(3), TeO(2), Nb(2)O(5) (or Ta(2)O(5)), and NH(4)H(2)PO(4) as reagents. The materials have novel layered crystal structures consisting of [M(5+)O(6/2)](-) corner-sharing octahedral chains that are connected to [Te(4+)O(4/2)](0) polyhedra and [P(5+)O(2/1)O(2/2)](-) tetrahedra. The Ba(2+) cations reside between the layers and maintain charge balance. The Te(4+) cations are in asymmetric coordination environments attributable to their lone pairs. The Nb(5+) distorts along the local C(4) direction of its octahedron resulting in a "short-long-short-long" Nb-O-Nb bond motif. The Nb(5+) cation displaces away from the oxide ligands that are bonded to Te(4+) or P(5+) cations, attributable to the structural rigidity of the TeO(4) and PO(4) polyhedra. Thus, the TeO(4) and PO(4) polyhedra support and reinforce the intraoctahedral distortion observed within the NbO(6) octahedra. Infrared and Raman spectroscopy, thermogravimetric analysis, and ion-exchange experiments are also presented. Crystal data: BaTeNbO(4)(PO(4)), orthorhombic, space group Pbca (No. 61), with a = 6.7351(9) A, b = 7.5540(10) A, c = 27.455(4) A, V = 1396.8(3) A(3), and Z = 8; BaTeTaO(4)(PO(4)), orthorhombic, space group Pbca (No. 61), with a = 6.734(2) A, b = 7.565(3) A, c = 27.435(9) A, V = 1372.6(8) A(3), and Z = 8.  相似文献   

16.
Three new strontium vanadium borophosphate compounds, (NH4)2(C2H10N2)6[Sr(H2O)5]2[V2P2BO12]6 10H2O (Sr-VBPO1) (1), (NH4)2(C3H12N2)6[Sr(H2O)4]2[V2P2BO12]6 17H2O (Sr-VBPO2) (2), and (NH4)3(C4H14N2)4.5[Sr(H2O)5]2[Sr(H2O)4][V2P2BO12]6 10H2O (Sr-VBPO3) (3) have been synthesized by interdiffusion methods in the presence of diprotonated ethylenediamine, 1,3-diaminopropane, and 1,4-diaminobutane. Compound 1 has a chain structure, whereas 2 and 3 have layered structures with different arrangements of [(NH4) [symbol: see text] [V2P2BO12]6] cluster anions within the layers. Crystal data: (NH4)2(C2H10N2)6[Sr(H2O)5]2[V2P2BO12]6 10H2O, monoclinic, space group C2/c (no. 15), a = 21.552(1) A, b = 27.694(2) A, c = 20.552(1) A, beta = 113.650(1) degrees, Z = 4; (NH4)2(C3H12N2)6[Sr(H2O)4]2[V2P2BO12]6 17H2O, monoclinic, space group I2/m (no. 12), a = 15.7618(9) A, b = 16.4821(9) A, c = 21.112(1) A, beta = 107.473(1) degrees, Z = 2; (NH4)3(C4H14N2)4.5[Sr(H2O)5]2[Sr(H2O)4] [V2P2BO12]6 10H2O, monoclinic, space group C2/c (no. 15), a = 39.364(2) A, b = 14.0924(7) A, c = 25.342(1) A, beta = 121.259(1) degrees, Z = 4. The differences in the three structures arise from the different steric requirements of the amines that lead to different amine-cluster hydrogen bonds.  相似文献   

17.
Bauer S  Müller H  Bein T  Stock N 《Inorganic chemistry》2005,44(25):9464-9470
Following the strategy of using polyfunctional phosphonic acids for the synthesis of open-framework metal phosphonates, the phosphonocarboxylic acid (H2O3PCH2)2NCH2C6H4COOH was used in the hydrothermal synthesis of new Ba phosphonates. Its decomposition led to the first open-framework barium phosphonate [Ba3(O3PCH2NH2CH2PO3)2(H2O)4].3H2O. The synthesis was also successfully performed using iminobis(methylphosphonic acid), (H2O3PCH2)2NH, as a starting material, and the synthesis was optimized to obtain as a pure material. The reaction setup as well as the pH are the dominant parameters, and only a diffusion-controlled reaction led to the desired compound. The crystal structure was solved from single-crystal data: monoclinic; C2/c; a=2328.7(2), b=1359.95(7), and c=718.62(6) pm; beta=98.732(10) degrees ; V=2249.5(3)x10(6) pm3; Z=4; R1=0.036; and wR2=0.072 (all data). The structure of [Ba3(O3PCH2NH2CH2PO3)2(H2O)4].3H2O is built up from BaO8 and BaO10 polyhedra forming BaO chains and layers, respectively. These are connected to a three-dimensional metal-oxygen-metal framework with the iminobis(methylphosphonic acid) formally coating the inner walls of the pores. The one-dimensional pores (3.6x4 A) are filled with H2O molecules that can be thermally removed. Thermogravimetric investigations and temperature-dependent X-ray powder diffraction demonstrate the stability of the crystal structure up to 240 degrees C. The uptake of N,N-dimethylformamide and H2O by dehydrated samples is demonstrated. Furthermore, IR, Raman, and 31P magic-angle-spinning NMR data are also presented.  相似文献   

18.
The hydrothermal reactions of a vanadium source, an appropriate diphosphonate ligand, and water in the presence of HF provide a series of compounds with neutral V-P-O networks as the recurring structural motif. When the {O3P(CH2)(n)PO3}4- diphosphonate tether length n is 2-5, metal-oxide hybrids of type 1, [V2O2(H2O){O3P(CH2)(n)PO3}] x xH2O, are isolated. The type 1 oxides exhibit the prototypical three-dimensional (3-D) "pillared" layer architecture. When n is increased to 6-8, the two-dimensional (2-D) "pillared" slab structure of the type 2 oxides [V2O2(H2O)4{O3P(CH2)6PO3}] is encountered. Further lengthening of the spacer to n = 9 provides another 3-D structure, type 3, constructed from the condensation of pillared slabs to give V-P-O double layers as the network substructure. When organic cations are introduced to provide charge balance for anionic V-P-O networks, oxides of types 4-7 are observed. For spacer length n = 3, a range of organodiammonium cations are accommodated by the same 3-D "pillared" layer oxovanadium diphosphonate framework in the type 4 materials [H3N(CH2)(n)NH3][V4O4(OH)2 {O3P(CH)3PO3}2] x xH2O [n = 2, x = 6 (4a); n = 3, x = 3 (4b); n = 4, x = 2 (4c); n = 5, x = 1 (4d); n = 6, x = 0.5 (4e); n = 7, x = 0 (4f)] and [H3NR]y[V4O4(OH)2 {O3P(CH)3PO3}2] x xH2O [R = -CH2(NH3)CH2CH3, y = 1, x = 0 (4g); R = -CH3, n = 2, x = 3 (4h); R = -CH2CH3, y = 2, x = 1 (4i); R = -CH2CH2CH3, y = 2, x = 0 (4j); cation = [H2N(CH2CH3)2], y = 2, x = 0 (4k)]. These oxides exhibit two distinct interlamellar domains, one occupied by the cations and the second by water of crystallization. Furthermore, as the length of the cation increases, the organodiammonium component spills over into the hydrophilic domain to displace the water of crystallization. When the diphosphonate tether length is increased to n = 5, structure type 5, [H3N(CH2)2NH3][V4O4(OH)2(H2O){O3P(CH2)5PO3}2] x H2O, is obtained. This oxide possesses a 2-D "pillared" network or slab structure, similar in gross profile to that of type 2 oxides and with the cations occupying the interlamellar domain. In contrast, shortening the diphosphonate tether length to n = 2 results in the 3-D oxovanadium organophosphonate structure of the type 7 oxide [H3N(CH2)5NH3][V3O3{O3P(CH2)2PO3}2]. The ethylenediphosphonate ligand does not pillar V-P-O networks in this instance but rather chelates to a vanadium center in the construction of complex polyhedral connectivity of 7. Substitution of piperazinium cations for the simple alkyl chains of types 4, 5, and 7 provides the 2-D pillared layer structure of the type 6 oxides, [H2N(CH2CH2)NH2][V2O2{O3P(CH)(n)PO3H}2] [n = 2 (6a); n = 4 (6b); n = 6 (6c)]. The structural diversity of the system is reflected in the magnetic properties and thermal behavior of the oxides, which are also discussed.  相似文献   

19.
采用水热合成法以丁二胺作为模板剂合成了钴的有机二膦酸超分子化合物[NH3(CH2)4NH3]Co(hedpH2)2(H2O)2 [hedpH4 = 1-羟亚乙基二膦酸, CH3C(OH)(PO3H2)2]。用元素分析、红外光谱、紫外-可见光谱、热重分析以及单晶结构解析对其进行了表征。该化合物的化学式为:C8H30N2CoO16P4,Mr = 593.15,晶体属单斜晶系,空间群C2/c,晶胞参数a = 16.128(2), b = 12.427(1), c = 12.610(2) ? b = 121.389(9), V = 2157.3(4) 3, Z = 4, Dc = 1.826 g/cm3, m(MoKa) = 1.172 mm-1, F(000) = 1228。结构用直接法解出,最终偏离因子R = 0.0285, wR = 0.0747。该化合物的结构包含单核的Co(hedpH2)2- 阴离子,阴离子之间通过氢键连结形成具有空隙的三维超分子骨架结构,双质子化的丁二胺分子位于空隙中。  相似文献   

20.
Four aluminophosphates, A3Al2P3O12 (A = Na, K (1), Rb (2), Tl (3)), have been synthesized by solid-state reactions and characterized by X-ray diffraction and NMR and IR spectroscopic techniques. Aluminum has trigonal bipyramidal coordination in the thallium compound and tetrahedral coordination in the others. Potassium, rubidium and thallium analogues have been structurally characterized by single-crystal X-ray diffraction and found to possess three-dimensional (Al2P3O12)3- anionic frameworks with channels occupied by A+ countercations. These frameworks are built from corner connections of PO4 tetrahedra with AlO4 tetrahedra in 1 and 2 and with AlO5 trigonal bipyramids in 3. Pertinent crystal data are as follows: for 1, orthorhombic space group Pna2(1), a = 8.685(2) A, b = 16.947(2) A, c = 8.458(3) A, Z = 4; for 2, orthorhombic space group Cmc2(1), a = 17.164(2) A, b = 8.6270(6) A, c = 8.8140(14) A, Z = 4; for 3, orthorhombic space group Pna2(1), a = 6.1478(15) A, b = 10.396(3) A, c = 17.787(5) A, Z = 4. Compound 3 is a rare example of an oxide possessing aluminum exclusively in trigonal bipyramidal coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号