首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridines (DATPs) belong to a new family of extracting agents recently developed in the framework of nuclear fuel reprocessing. These molecules exhibit exceptional properties to separate actinides(III) from lanthanides(III) in nitric acid solutions. In a previous work, the use of electrospray ionization mass spectrometry (ESI-MS) provided data such as stoichiometries and conditional stability constants of various DATP complexes with europium and evidenced the unusual capability of DiPTP [bis(di-iso-propyltriazinyl)pyridine] ligand to form 1:3 complexes in nitric acid solution. This latter result has then been further investigated by considering DiPTP complexation features with the complete lanthanide family. Moreover, a complementary study of equilibria in solution with a non intrusive technique such as time-resolved laser-induced luminescence (TRLIL) seemed quite promising to determine thermochemical data such as enthalpy and entropy variations associated with the complexation reaction between Eu(III) and DiPTP. Furthermore, this TRLIL study may also allow ensuring that the observations made on mass spectra actually reflected the equilibrium in solution and not an intermediate state between liquid phase and gaseous phase. The investigation of europium(III) complexation with DiPTP by TRLIL described in this paper first led to highlight the exclusive formation of a 1:3 complex between europium(III) and the DiPTP ligand, specificity already pointed out by ESI-MS. Two different calculation methods, using either luminescence spectra and luminescence decay curves, have then been used to measure the conditional stability constant of the [Eu(DiPTP)(3)](3+) complex. Both methods gave similar results (log beta3(app)= 14.3 +/- 0.6 at pH 2.8) in good agreement with the one previously reported in ESI-MS studies (log beta3(app)= 14.0 +/- 0.6 at pH 2.8). Moreover, while considering the influence of temperature on the value of the stability constant, it was possible to estimate the enthalpy (DeltaH(beta3) = -29 +/- 3 kJ mol(-1) at pH 2.8) and entropy variations (DeltaS(beta3) = 173 +/- 10 J K(-1) mol(-1) at pH 2.8) associated with the [Eu(DiPTP)(3)](3+) complex formation.  相似文献   

2.
ESI mass spectrometry was used to investigate the europium complexation by tridentate ligands L identical with 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)-pyridines (DATP) that have shown unique separation properties of actinides(III) from lanthanides(III) in nitric acid solutions. Complexes of three ligands, namely methyl (DMTP), n-propyl (DnPTP), and iso-propyl (DiPTP), have been investigated in acidic solutions to check the aqueous-phase stability of Eu(L)(3)(3+) ions identified previously in the solid state. The data obtained show, first, the presence of stable Eu(L)(3)(3+) ions with DnPTP (log beta(3)(app) = 12.0 +/- 0.5) and DiPTP (log beta(3)(app) = 14.0 +/- 0.6) in methanol/water (1:1 v/v) solutions under pH range 2.8-4.6 and, second, a mechanism whereby alkyl moieties contribute to a self-assembling process leading to the formation of Eu(L)(3)(3+) ions. Other complexes such as Eu(L)(2)(3+) ions are only observed for DnPTP (log beta(2)(app) = 6.7 +/- 0.5) and DMTP (log beta(2)(app) = 6.3 +/- 0.1) and Eu(L)(3+) only for DMTP (log beta(1)(app) = 2.9 +/- 0.2). The log beta(n)(app) values for the Eu(L)(n)(3+) (n = 1-3) complexes were determined at pH 2.8. Better insight was given in this study concerning the role of the hydrophobic exterior of the ligands for the design of a new range of extracting agents.  相似文献   

3.
The first examples of lanthanide(III) organoarsonates, Ln(L(1))(H(2)O)(3) (Ln = La (1), H(3)L(1) = 4-hydroxy-3-nitrophenylarsonic acid), Ln(L(1))(H(2)O)(2) (Ln = Nd (2), Gd (3)), and mixed-ligand lanthanide(III) organoarsonates, Ln(2)(HL(1))(2)(C(2)O(4))(H(2)O)(2) (Ln = Nd (4), Sm (5), Eu (6)), were hydrothermally synthesized and structurally characterized. Compounds 1-3 feature a corrugated lanthanide arsonate layer, in which 1D lanthanide arsonate inorganic chains are further interconnected via bridging L(1)(3-) ligands. Compounds 4-6 exhibit a complicated 3D network. The interconnection of the lanthanide(III) ions by the bridging arsonate ligand leads to the formation of a novel 3D framework with long narrow 1D tunnels along the a-axis, with the oxalate anions are located at the above tunnels and bridging with lanthanide(III) ions. Compounds 2 and 4 exhibit the characteristic emission bands of the Nd(III) ion, whereas compound 6 displays the characteristic emission bands of the Eu(III) ion. The magnetic properties of compounds 3-6 were also investigated.  相似文献   

4.
Herein, we discuss how, why, and when cascade complexation reactions produce stable, mononuclear, luminescent ternary complexes, by considering the binding of hexafluoroacetylacetonate anions (hfac(-)) and neutral, semi-rigid, tridentate 2,6-bis(benzimidazol-2-yl)pyridine ligands (Lk) to trivalent lanthanide atoms (Ln(III)). The solid-state structures of [Ln(Lk)(hfac)(3)] (Ln=La, Eu, Lu) showed that [Ln(hfac)(3)] behaved as a neutral six-coordinate lanthanide carrier with remarkable properties: 1) the strong cohesion between the trivalent cation and the didentate hfac anions prevented salt dissociation; 2) the electron-withdrawing trifluoromethyl substituents limited charge-neutralization and favored cascade complexation with Lk; 3) nine-coordination was preserved for [Ln(Lk)(hfac)(3)] for the complete lanthanide series, whilst a counterintuitive trend showed that the complexes formed with the smaller lanthanide elements were destabilized. Thermodynamic and NMR spectroscopic studies in solution confirmed that these characteristics were retained for solvated molecules, but the operation of concerted anion/ligand transfers with the larger cations induced subtle structural variations. Combined with the strong red photoluminescence of [Eu(Lk)(hfac)(3)], the ternary system Ln(III)/hfac(-)/Lk is a promising candidate for the planned metal-loading of preformed multi-tridentate polymers.  相似文献   

5.
Two new flexible exo-bidentate ligands were designed and synthesized, incorporating different backbone chain lengths bearing two salicylamide arms, namely 2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))bis(N-benzylbenzamide) (L(I)) and 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(N-benzylbenzamide) (L(II)). These two structurally related ligands are used as building blocks for constructing diverse lanthanide polymers with luminescent properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, TGA analysis, X-ray powder diffraction, and IR spectroscopy, ten new coordination polymers have been determined using X-ray diffraction analysis. All the coordination polymers exhibit the same metal-to-ligand molar ratio of 2?:?3. L(I), as a bridging ligand, reacts with lanthanide nitrates forming two different types of 2D coordination complexes: herringbone framework {[Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)](∞) (Ln = La (1), and Pr (2), m = 1, 2)} as type I,; and honeycomb framework {[Ln(2)(NO(3))(6)(L(I))(3)·nCH(3)OH](∞) (Ln = Nd (3), Eu (4), Tb (5), and Er (6), n = 0 or 3)} as type II, which change according to the decrease in radius of the lanthanide. For L(II), two distinct structure types of 1D ladder-like coordination complexes were formed with decreasing lanthanide radii: [Ln(2)(NO(3))(6)(L(II))(3)·2C(4)H(8)O(2)](∞) (Ln = La (7), Pr (8), Nd (9)) as type III, [Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)·nCH(3)OH](∞) (Ln = Eu (10), Tb (11), and Er (12), m, n = 2 or 0) as type IV. The progressive structural variation from the 2D supramolecular framework to 1D ladder-like frameworks is attributed to the varying chain length of the backbone group in the flexible ligands. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were also investigated in detail.  相似文献   

6.
This report covers studies in trivalent lanthanide complexation by two simple cyclohexanetriols that are models of the two coordination sites found in sugars and derivatives. Several complexes of trivalent lanthanide ions with cis,cis-1,3,5-trihydroxycyclohexane (L(1)()) and cis,cis-1,2,3-trihydroxycyclohexane (L(2)()) have been characterized in the solid state, and some of them have been studied in organic solutions. With L(1)(), Ln(L)(2) complexes are obtained when crystallization is performed from acetonitrile solutions whatever the nature of the salt (nitrate or triflate) [Ln(L(1)())(2)(NO(3))(2)](NO(3)) (Ln = Pr, Nd); [Ln(L(1)())(2)(NO(3))H(2)O](NO(3))(2) (Ln = Eu, Ho, Yb); [Ln(L(1)())(2)(OTf)(2)(H(2)O)](OTf) (Ln = Nd, Eu). Lanthanum nitrate itself gives a mixed complex [La(L(1)())(2)(NO(3))(2)][LaL(1)()(NO(3))(4)] from acetonitrile solution while [La(L(1)())(2)(NO(3))(2)](NO(3)) is obtained using dimethoxyethane as reaction solvent and crystallization medium. With L(2)(), Ln(L)(2) complexes have also been crystallized from methanol solution [Ln(L(2)())(2)(NO(3))(2)]NO(3), (Ln = Pr, Nd, Eu). Single-crystal X-ray diffraction analyses are reported for these complexes. Complex formation in solution has been studied for several triflate salts (La, Pr, Nd, Eu, and Yb) with L(1 )()and L(2)(), respectively in acetonitrile and in methanol. In contrast to the solid state, both structures Ln(L) and Ln(L)(2) equilibrate in solution, as was demonstrated by low-temperature (1)H NMR and electrospray ionization mass spectrometry experiments. Competing experiments in complexing abilities of L(1)() and L(2)() with trivalent lanthanide cations have shown that only L(2)() exhibits a small selectivity (Nd > Pr > Yb > La > Eu) in methanol.  相似文献   

7.
Mononuclear complexes [Re(bpym)(CO)(3)Cl] and [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] (bpym = 2,2'-bipyrimidine), in which one of the bipyrimidine sites is vacant, have been used as "complex ligands" to prepare heterodinuclear d-f complexes in which a lanthanide tris(1,3-diketonate) unit is attached to the secondary bipyrimidine site to evaluate the ability of d-block chromophores to act as antennae for causing sensitized near-infrared (NIR) luminescence from adjacent lanthanide(III) centers. The two sets of complexes so prepared are [Re(CO)(3)Cl(mu-bpym)Ln(fod)(3)] (abbreviated as Re-Ln; where Ln = Yb, Nd, Er) and [(F(3)C-C(6)H(4)-CC)(2)Pt(mu-bpym)Ln(hfac)(3)] (abbreviated as Pt-Ln; where Ln = Nd, Gd). Members of both series have been structurally characterized; the metal-metal separation across the bipyrimidine bridge is approximately 6.3 A in each case. In these complexes, the (3)MLCT (MLCT = metal to ligand charge-transfer) luminescences of the mononuclear [Re(bpym)(CO)(3)Cl] and [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] complexes are quenched by energy transfer to those lanthanides (Ln = Yb, Nd, Er) that have low-lying f-f states capable of NIR luminescence; as a result, sensitized NIR luminescence is seen from the lanthanide center following excitation of the d-block unit. In the solid state, quenching of the luminescence from the d-block chromophore is complete, indicating efficient d --> f energy transfer, as a result of the short metal-metal separation across the bipyrimidine bridge. In a CH(2)Cl(2) solution, partial dissociation of the dinuclear complexes into the mononuclear units occurs, with the result that some (3)MLCT luminescence is observed from mononuclear [Re(bpym)(CO)(3)Cl] or [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] present in the equilibrium mixture. Solution UV-vis and luminescence titrations, carried out by the addition of portions of Ln(fod)(3)(H(2)O)(2) or Ln(hfac)(3)(H(2)O)(2) to the d-block complex ligands, indicate that binding of the lanthanide tris(1,3-diketonate) unit at the secondary bipyrimidine site to give the d-f dinuclear complexes occurs with an association constant of ca. 10(5) M(-)(1).  相似文献   

8.
The N-donor complexing ligand 2,6-bis(5-(2,2-dimethylpropyl)-1H-pyrazol-3-yl)pyridine (C5-BPP) was synthesized and screened as an extracting agent selective for trivalent actinide cations over lanthanides. C5-BPP extracts Am(III) from up to 1 mol/L HNO(3) with a separation factor over Eu(III) of approximately 100. Due to its good performance as an extracting agent, the complexation of trivalent actinides and lanthanides with C5-BPP was studied. The solid-state compounds [Ln(C5-BPP)(NO(3))(3)(DMF)] (Ln = Sm(III), Eu(III)) were synthesized, fully characterized, and compared to the solution structure of the Am(III) 1:1 complex [Am(C5-BPP)(NO(3))(3)]. The high stability constant of log β(3) = 14.8 ± 0.4 determined for the Cm(III) 1:3 complex is in line with C5-BPP's high distribution ratios for Am(III) observed in extraction experiments.  相似文献   

9.
The adsorption of the lanthanides (except for Pm) on the zeolite Y was investigated under various solution conditions of nitrate ion concentration ([NO(-)(3)]: 0.001-2 mol/dm(3)) and total lanthanide concentration (from 0.0001 to 0.001 mol/dm(3)). The solutions of the lanthanide nitrates were equilibrated with the zeolite samples at 296 K. The concentrations of lanthanides in the initial and equilibrium solutions were determined by means of spectrophotometrical method with Arsenazo III reagent and distribution constants K(d) of the lanthanides between aqueous and zeolite phases were calculated. The evident concave tetrad effect in the change of logK(d) values (nitrate concentrations 0.4-2 mol/dm(3)) within the lanthanide series was noticed and an attempt at its explanation through the comparison of covalence in LnO bonds existing in triple bond AlO(1/3Ln)Si triple bond species in the zeolite phase and in Ln(NO(3))(2+) complexes forming in the aqueous phase was presented. The weak convex tetrad effect for equilibrium nitrate concentrations 0.001-0.32 mol/dm(3), manifesting in the change of logK(d) values and in the alteration of logK (adsorption constants), is evidence of the complexation of the tripositive lanthanide ions by the oxygens originating both from water molecules and from the zeolite framework.  相似文献   

10.
HDEHP (di-2-ethylhexylphosphoric acid) is one of the extractant molecules most intensively used in liquid-liquid extraction systems. Of particular interest in this investigation is its application in the TALSPEAK process, which is among the methods currently considered to be ready for technological deployment for the separation of trivalent actinides (Am(III) and Cm(III)) from lanthanide (Ln(III)) cations. However, several fundamental features of the chemistry of this separation system are not well understood. It has become clear that the lactic acid (LacH), which is employed as a buffer in the aqueous phase, plays a very complex role in the biphasic chemistry of the system. In this study, Nuclear Magnetic Resonance ((31)P NMR) was used to investigate the rate of HDEHP (AH) exchange occurring in the binary complexes Ln(AHA)(3) (Ln = La and Sm), which are usually considered to be the predominant species present in a non-polar organic phase (1,3-diisopropylbenzene). The rate data indicate considerably faster ligand exchange kinetics for La(AHA)(3) than is seen for Sm(AHA)(3), with a corresponding shift from a dissociative interchange to an associative process. With the introduction of lactic acid (LacH) and higher concentrations of lanthanides into the system, ternary complexes (Ln(3+)-HDEHP-lactate) become dominant, as demonstrated using (31)P NMR and Electrospray Ionization Mass Spectrometry (ESI-MS). Lactate partitioning experiments indicate that the amount of lactate extracted is correlated with the concentration of Ln(3+). The terminal ternary complex species appears to have the general stoichiometry 1 : 2 : 1 (Ln(3+)?:?HDEHP?:?lactate). The detection of bimetallic ternary complexes (by ESI-MS) with La(3+) and the observation of multiple phosphorus environments (by NMR) suggest the presence of polymetallic complexes with the general formula (LaA(2)Lac)(n). A model is proposed in which DEHP(-) molecules bridge two metal ions.  相似文献   

11.
The reaction of the lanthanide salts LnI3(thf)4 and Ln(OTf)3 with tris(2-pyridylmethyl)amine (tpa) was studied in rigorously anhydrous conditions and in the presence of water. Under rigorously anhydrous conditions the successive formation of mono- and bis(tpa) complexes was observed on addition of 1 and 2 equiv of ligand, respectively. Addition of a third ligand equivalent did not yield additional complexes. The mono(tpa) complex [Ce(tpa)I3] (1) and the bis(tpa) complexes [Ln(tpa)2]X3 (X = I, Ln = La(III) (2), Ln = Ce(III) (3), Ln = Nd(III) (4), Ln = Lu(III) (5); X = OTf, Ln = Eu(III) (6)) were isolated under rigorously anhydrous conditions and their solid-state and solution structures determined. In the presence of water, 1H NMR spectroscopy and ES-MS show that the successive addition of 1-3 equiv of tpa to triflate or iodide salts of the lanthanides results in the formation of mono(tpa) aqua complexes followed by formation of protonated tpa and hydroxo complexes. The solid-state structures of the complexes [Eu(tpa)(H2O)2(OTf)3] (7), [Eu(tpa)(mu-OH)(OTf)2]2 (8), and [Ce(tpa)(mu-OH)(MeCN)(H2O)]2I4 (9) have been determined. The reaction of the bis(tpa) lanthanide complexes with stoichiometric amounts of water yields a facile synthetic route to a family of discrete dimeric hydroxide-bridged lanthanide complexes prepared in a controlled manner. The suggested mechanism for this reaction involves the displacement of one tpa ligand by two water molecules to form the mono(tpa) complex, which subsequently reacts with the noncoordinated tpa to form the dimeric hydroxo species.  相似文献   

12.
Two isostructural tetranuclear lanthanide clusters of general formula [Ln(III)(4)(μ(3)-OH)(2)(o-van)(4)(O(2)CC(CH(3))(3))(4)(NO(3))(2)]·CH(2)Cl(2)·1.5H(2)O (Ln = Gd (1) and Dy (2)) (o-van = 3-methoxysalicylaldehydato anion) are reported. The metallic cores of both complexes display a planar 'butterfly' arrangement. Magnetic studies show that both are weakly coupled, with 2 displaying probable SMM behaviour.  相似文献   

13.
A set of three potentially bridging ligands containing two tridentate chelating N,N',O-donor (pyrazole-pyridine-amide) donors separated by an o, m, or p-phenylene spacer has been prepared and their coordination chemistry with lanthanide(III) ions investigated. Ligand L(1) (p-phenylene spacer) forms complexes with a 2:3 M:L ratio according to the proportions used in the reaction mixture; the Ln(2)(L(1))(3) complexes contain two 9-coordinate Ln(III) centres with all three bridging ligands spanning both metal ions, and have a cylindrical (non-helical) 'mesocate' architecture. The 1:1 complexes display a range of structural types depending on the conditions used, including a cyclic Ln(4)(L(1))(4) tetranuclear helicate, a Ln(2)(L(1))(2) dinuclear mesocate, and an infinite one-dimensional coordination polymer in which metal ions and bridging ligands alternate along the sequence. ESMS studies indicate that the 1:1 complexes form a mixture of oligonuclear species {Ln(L(1))}(n) in solution (n up to 5) which are likely to be cyclic helicates. In contrast, ligands L(2) and L(3) (with o- and m-phenylene spacers, respectively) generally form dinuclear Ln(2)L(2) Ln(III) complexes in which the two ligands may be arranged in a helical or non-helical architecture about the two metal ions. These complexes also contain an additional exogenous bidentate bridging ligand, either acetate or formate, which has arisen from hydrolysis of solvent molecules promoted by the Lewis-acidity of the Ln(III) ions. Luminescence studies on some of the Nd(III) complexes showed that excitation into ligand-centred pi-pi* transitions result in the characteristic near-infrared luminescence from Nd(III) at 1060 nm.  相似文献   

14.
A family of thirteen tetranuclear heterometallic zinc(II)-lanthanide(III) complexes of the hexa-imine macrocycle (L(Pr))(6-), with general formula Zn(II)(3)Ln(III)(L(Pr))(NO(3))(3)·xsolvents (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm or Yb), were prepared in a one-pot synthesis using a 3:1:3:3 reaction of zinc(II) acetate, the appropriate lanthanide(III) nitrate, the dialdehyde 1,4-diformyl-2,3-dihydroxybenzene (H(2)L(1)) and 1,3-diaminopropane. A hexanuclear homometallic zinc(II) macrocyclic complex [Zn(6)(L(Pr))(OAc)(5)(OH)(H(2)O)]·3H(2)O was obtained using a 2:0:1:1 ratio of the same reagents. A control experiment using a 1:0:1:1 ratio failed to generate the lanthanide-free [Zn(3)(L(Pr))] macrocyclic complex. The reaction of H(2)L(1) and zinc(II) acetate in a 1:1 ratio yielded the pentanuclear homometallic complex of the dialdehyde H(2)L(1), [Zn(5)(L(1))(5)(H(2)O)(6)]·3H(2)O. An X-ray crystal structure determination revealed [Zn(3)(II)Pr(III)(L(Pr))(NO(3))(2)(DMF)(3)](NO(3))·0.9DMF has the large ten-coordinate lanthanide(III) ion bound in the central O(6) site with two bidentate nitrate anions completing the O(10) coordination sphere. The three square pyramidal zinc(II) ions are in the outer N(2)O(2) sites with a fifth donor from DMF. Measurement of the magnetic properties of [Zn(II)(3)Dy(III)(L(Pr))(NO(3))(3)(MeOH)(3)]·4H(2)O with a weak external dc field showed that it has a frequency-dependent out-of-phase component of ac susceptibility, indicative of slow relaxation of the magnetization (SMM behaviour). Likewise, the Er and Yb analogues are field-induced SMMs; the latter is only the second example of a Yb-based SMM. The neodymium, ytterbium and erbium complexes are luminescent in the solid phase, but only the ytterbium and neodymium complexes show strong lanthanide-centred luminescence in DMF solution.  相似文献   

15.
A series of dinuclear platinum(II)-lanthanide(iii) complexes has been prepared in which a square-planar Pt(II) unit, either [(PPh(3))(2)Pt(pdo)] (H(2)pdo=5,6-dihydroxyphenanthroline) or [Cl(2)Pt(dppz)] [dppz=2,3-bis(2-pyridyl)pyrazine], is connected to a Ln(dik)(3) unit ("dik"=a 1,3-diketonate ligand). The mononuclear complexes [(PPh(3))(2)Pt(pdo)] and [Cl(2)Pt(dppz)] both have external, vacant N,N-donor diimine-type binding sites that react with various [Ln(dik)(3)(H(2)O)(2)] units to give complexes [(PPh(3))(2)Pt(micro-pdo)Ln(tta)(3)] (series A; Htta=thenoyltrifluoroacetone), [Cl(2)Pt(micro-dppz)Ln(tta)(3)] (series B); and [Cl(2)Pt(micro-dppz)Ln(btfa)(3)] (series C; Hbtfa=benzoyltrifluoroacetone); in all of these the lanthanide centres are eight-coordinate. The lanthanides used exhibit near-infrared luminescence (Nd, Yb, Er). Crystal structures of members of each series are described. In all complexes, excitation into the Pt-centred absorption band (at 520 nm for series A complexes; 440 nm for series B and C complexes) results in characteristic near-IR luminescence from the Nd, Yb or Er centres in both the solid state and in CH(2)Cl(2), following energy-transfer from the Pt antenna chromophore. This work demonstrates how d-block-derived chromophores, with their intense and tunable electronic transitions, can be used as sensitisers to achieve near-infrared luminescence from lanthanides in suitably designed heterodinuclear complexes based on simple bridging ligands.  相似文献   

16.
Three new aryl amide type ligands, N-(phenyl)-2-(quinolin-8-yloxy)acetamide (L(1)), N-(benzyl)-2-(quinolin-8-yloxy)acetamide (L(2)) and N-(naphthalene-1-yl)-2-(quinolin-8-yloxy)acetamide (L(3)) were synthesized. With these ligands, three series of lanthanide(III) complexes were prepared: [Ln(L(1))(2)(NO(3))(2)]NO(3), [Ln(L(2))(2)(NO(3))(2)(H(2)O)(2)]NO(3).H(2)O and [Ln(L(3))(2)(NO(3))(2)(H(2)O)(2)]NO(3).H(2)O (Ln=La, Sm, Eu, Gd). The complexes were characterized by the elemental analyses, molar conductivity, (1)H NMR spectra, IR spectra and TG-DTA. The fluorescence properties of complexes in the solid state and the triplet state energies of the ligands were studied in detail, respectively. It was found that the Eu(III) complexes have bright red fluorescence in solid state. The energies of excited triplet state for the three ligands are 20325 cm(-1) (L(3)), 21053 cm(-1) (L(2)) and 22831 cm(-1) (L(1)), respectively. All the three ligands sensitize Eu(III) strongly and the order of the emission intensity for the Eu(III) complexes with the three ligands is L(3)>L(2)>L(1). It can be explained by the relative energy gap between the lowest triplet energy level of the ligand (T) and (5)D(1) of Eu(III). This means that the triplet energy level of the ligand is the chief factor, which dominates Eu(III) complexes luminescence.  相似文献   

17.
Zhu X  Wang S  Zhou S  Wei Y  Zhang L  Wang F  Feng Z  Guo L  Mu X 《Inorganic chemistry》2012,51(13):7134-7143
Two series of new lanthanide amido complexes supported by bis(indolyl) ligands with amino-coordinate-lithium as a bridge were synthesized and characterized. The interactions of [(Me(3)Si)(2)N](3)Ln(III)(μ-Cl)Li(THF)(3) with 2 equiv of 3-(CyNHCH(2))C(8)H(5)NH in toluene produced the amino-coordinate-lithium bridged bis(indolyl) lanthanide amides [μ-{[η(1):η(1):η(1):η(1)-3-(CyNHCH(2))Ind](2)Li}Ln[N(SiMe(3))(2)](2)] (Cy = cyclohexyl, Ind = Indolyl, Ln = Sm (1), Eu (2), Dy (3), Yb (4)) in good yields. Treatment of [μ-{[η(1):η(1):η(1):η(1)-3-(CyNHCH(2))Ind](2)Li}Ln[N(SiMe(3))(2)](2)] with THF gave new lanthanide amido complexes [μ-{[η(1):η(1)-3-(CyNHCH(2))Ind](2)Li(THF)}Ln[N(SiMe(3))(2)](2)] (Ln = Eu (5), Dy (6), Yb (7)), which can be transferred to amido complexes 2, 3, and 4 by reflux the corresponding complexes in toluene. Thus, two series of rare-earth-metal amides could be reciprocally transformed easily by merely changing the solvent in the reactions. All new complexes 1-7 are fully characterized including X-ray structural determination. The catalytic activities of these new lanthanide amido complexes for hydrophosphonylation of both aromatic and aliphatic aldehydes and various substituted aldimines were explored. The results indicated that these complexes displayed a high catalytic activity for the C-P bond formation with employment of low catalyst loadings (0.1 mol?% for aldehydes and 1 mol?% for aldimines) under mild conditions. Thus, it provides a convenient way to prepare both α-hydroxy and α-amino phosphonates.  相似文献   

18.
Two novel lanthanide-organic frameworks (LnOFs) with (4(10),6(5))(4(9),6(6)) topology, [Ln(Hbptc)(H(2)O)](n) (Ln = Eu(1), Gd(2); H(4)bptc = 3,3',4,4'-biphenyltetracarboxylic acid) were synthesized via the hydrothermal in situ reaction between lanthanide salts and 3,3',4,4'-biphenyltetracarboxylic dianhydride (bpta) under low pH conditions. In complexes 1 and 2, homohelix bundles with opposite chirality are assembled alternately and result in pillar-like 3D extended networks incorporated with coordinated water molecules, which show high thermal stability. The luminescence properties are illustrated by the Eu(III) complex (1) and its Gd-doped compound, which are intensive red emitters. The magnetic properties of complexes 1 and 2 are also investigated.  相似文献   

19.
The thermodynamic parameters of complexation of Ln(III) cations with tris(2-aminoethyl)amine (tren) and tetraethylenepentamine (tetren) were determined in dimethyl sulfoxide (DMSO) by potentiometry and calorimetry. The excitation and emission spectra and luminescence decay constants of Eu3+ and Tb3+ complexed by tren and tetren, as well as those of the same lanthanides(III) complexed with diethylenetriamine (dien) and triethylenetetramine (trien), were also obtained in the same solvent. The combination of thermodynamic and spectroscopic data showed that, in the 1:1 complexes, all nitrogens of the ligands are bound to the lanthanides except in the case of tren, in which the pendant N is bound. For the larger ligands (trien, tren, tetren) in the higher complexes (ML2), there was less complete binding by available donors, presumably due to steric crowding. FT-IR studies were carried out in an acetonitrile/DMSO mixture, suitably chosen to follow the changes in the primary solvation sphere of lanthanide(III) due to complexation of amine groups. Results show that the mean number of molecules of DMSO removed from the inner coordination sphere of lanthanides(III) is lower than ligand denticity and that the coordination number of the metal ions increases with amine complexation from approximately 8 to approximately 10. Independently of the number and structure of the amines, linear trends, similar for all lanthanides, were obtained by plotting the values of DeltaGj degrees, DeltaHj degrees, and TDeltaSj degrees for the complexation of ethylenediamine (en), dien, trien, tren, and tetren as a function of the number of amine metal-coordinated nitrogen atoms. The main factors on which the thermodynamic functions of lanthanide(III) complexation reactions in DMSO depend are discussed.  相似文献   

20.
The Ln[N(SiMe(3))(2)](3)/K dinitrogen reduction system, which mimicks the reactions of the highly reducing divalent ions Tm(II), Dy(II), and Nd(II), has been explored with the entire lanthanide series and uranium to examine its generality and to correlate the observed reactivity with accessibility of divalent oxidation states. The Ln[N(SiMe(3))(2)](3)/K reduction of dinitrogen provides access from readily available starting materials to the formerly rare class of M(2)(mu-eta(2):eta(2)-N(2)) complexes, [[(Me(3)Si)(2)N](2)(THF)Ln](2)(mu-eta(2):eta(2)-N(2)), 1, that had previously been made only from TmI(2), DyI(2), and NdI(2) in the presence of KN(SiMe(3))(2). This LnZ(3)/alkali metal reduction system provides crystallographically characterizable examples of 1 for Nd, Gd, Tb, Dy, Ho, Er, Y, Tm, and Lu. Sodium can be used as the alkali metal as well as potassium. These compounds have NN distances in the 1.258(3) to 1.318(5) A range consistent with formation of an (N=N)(2)(-) moiety. Isolation of 1 with this selection of metals demonstrates that the Ln[N(SiMe(3))(2)](3)/alkali metal reaction can mimic divalent lanthanide reduction chemistry with metals that have calculated Ln(III)/Ln(II) reduction potentials ranging from -2.3 to -3.9 V vs NHE. In the case of Ln = Sm, which has an analogous Ln(III)/Ln(II) potential of -1.55 V, reduction to the stable divalent tris(amide) complex, K[Sm[N(SiMe(3))(2)](3)], is observed instead of dinitrogen reduction. When the metal is La, Ce, Pr, or U, the first crystallographically characterized examples of the tetrakis[bis(trimethylsilyl)amide] anions, [M[N(SiMe(3))(2)](4)](-), are isolated as THF-solvated potassium or sodium salts. The implications of the LnZ(3)/alkali metal reduction chemistry on the mechanism of dinitrogen reduction and on reductive lanthanide chemistry in general are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号