首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel neutral mixed-valent Cu(I)Cu(II)(2) triangular metallomacrocycle [Cu(3)L(2)(HL)].3CH(3)OH.2H(2)O (1) was assembled by reaction of the tetradentate ligand bis(N-salicylidene-4,4'-diphenylamine), H(2)L, with a copper(II) salt. ESI-MS show peaks only corresponding to the triangular structural species, indicating the high stability of the trimer structure in solution. Magnetic study confirms that there are two Cu(II) ions and one Cu(I) ion in a discrete triangular molecule. The crystal structure of 1 reveals that the triangle is formed by three deprotonated ligands and three copper ions with a Cu-Cu separation of ca. 11.8 A. Each copper atom is coordinated by two oxygen atoms and two nitrogen atoms from two different bis-bidentate ligands in a heavily distorted tetrahedral geometry, while each ligand is bound to two metal ions in a bis-bidentate coordination mode and links the metal centers overlapping in an unprogressive manner. Strong intramolecular pi.pi interactions between the ligands are found to stabilize the constraint conformation of the triangle. Electrochemical study reveals that the mixed-valent Cu(I)Cu(II)(2) complex is the most stable state in solution condition, and the electrochemical communication between the copper ions might be explained on the basis of the through-bond interaction. UV-vis-NIR spectral measurement demonstrates the Robin-Day class II behavior of the mixed-valence compound with a weak copper-copper interaction.  相似文献   

2.
Reaction of [Cu(PPh(3))(2)(MeCN)(2)]PF(6) and trans-1,2-bis(4-pyridyl)ethylene (bpe) results in the trans-cis isomerization of the bpe and subsequent formation of a mixed-isomer linear coordination polymer over the course of several days or weeks depending on solvent. The one unique copper atom in the structure is coordinated to two bridging cis-bpe ligands, one bridging trans-bpe ligand, and one terminal triphenylphoshine ligand to create [Cu(trans-bpe)(0.5)(cis-bpe)(PPh(3))](+)( infinity ) zigzag chains. The reaction requires both visible light and Cu(I), and the crystallization of this particular coordination polymer is insensitive to the ratio of trans:cis isomers in solution, occurring both from trans-rich and cis-rich solutions.  相似文献   

3.
A novel three-dimensional coordination polymer with a mixed-valence localized copper(I,II) dimeric unit, [Cu2(4-pya)3]n (4-pya = 4-pyridinecarboxylate), was hydrothermally synthesized via a simultaneous in-situa redox and hydrolysis reaction of Cu(II) and 4-cyanopyridine and crystallographically characterized to be a twofold interpenetrated three-dimensional coordination network with a cubic [Cu16(4-pya)12] building unit.  相似文献   

4.
Metal complexes composed of bidentate 1,2-bis(2-methyl-5-(4-pyridyl)-3-thienyl)perfluorocyclopentene (1a) and monodentate 1-(2-methyl-5-phenyl-3-thienyl)-2-(2-methyl-5-(4-pyridyl)-3-thienyl)perfluorocyclopentene (2a) photochromic ligands and M(hfac)(2) (M = Zn(II), Mn(II), and Cu(II)) were prepared, and their photoinduced coordination structural changes were studied. X-ray crystallographic analyses showed the formation of coordination polymers and discrete 1:2 complexes for bidentate and monodentate ligands, respectively. The complexes underwent reversible photochromic reactions by alternate irradiation with UV and visible lights in solution as well as in the single-crystalline phase. Upon photoirradiation with UV and visible light, the ESR spectra of the copper complexes of 1a reversibly changed. While the open-ring isomer gave an axial-type spectrum, the photogenerated closed-ring isomer showed a rhombic-type spectrum. This indicates that the photoisomerization induced the change in the coordination structure.  相似文献   

5.
A series of structurally characterized copper complexes of two pyridazine-spaced cryptands in redox states + (I,I), (II,I), (II), (II,II) are reported. The hexaimine cryptand L(I) [formed by the 2 + 3 condensation of 3,6-diformylpyridazine with tris(2-aminoethyl)amine (tren)] is able to accommodate two non-stereochemically demanding copper(I) ions, resulting in [Cu(I)(2)L(I)](BF(4))(2) 1, or one stereochemically demanding copper(II) ion, resulting in [Cu(II)L(I)()](BF(4))(2) 3. Complex 3 crystallizes in two forms, 3a and 3b, with differing copper(II) ion coordination geometries. Addition of copper(I) to the monometallic complex 3 results in the mixed-valence complex [Cu(I)Cu(II)L(I)](X)(3) (X = PF(6)(-), 2a; X = BF(4)(-), 2b) which is well stabilized within this cryptand as indicated by electrochemical studies (K(com) = 2.1 x 10(11)). The structurally characterized, octaamine cryptand L(A), prepared by sodium borohydride reduction of L(I), is more flexible than L(I) and can accommodate two stereochemically demanding copper(II) ions, generating the dicopper(II) cryptate [Cu(II)(2)L(A)](BF(4))(4) 4. Electrochemical studies indicate that L(A) stabilizes the copper(II) oxidation state more effectively than L(I); no copper redox state lower than II,II has been isolated in the solid state using this ligand.  相似文献   

6.
Structures of Cu(I) and Cu(II) complexes of sterically hindered tripyridine ligands RL = tris(6-methyl-2-pyridyl)methane (HL), 1,1,1-tris(6-methyl-2-pyridyl)ethane (MeL), and 1,1,1-tris(6-methyl-2-pyridyl)propane (EtL), [Cu(RL)(MeCN)]PF(6) (1-3), [Cu(RL)(SO(4))] (4-6), and [Cu(RL)(NO(3))(2)] (7-9), have been explored in the solid state and in solution to gain some insights into modulation of the copper coordination structures by bridgehead alkyl groups (CH, CMe, and CEt). The crystal structures of 1-9 show that RL binds a copper ion in a tridentate facial-capping mode, except for 3, where EtL chelates in a bidentate mode with two pyridyl nitrogen atoms. To avoid the steric repulsion between the bridgehead alkyl group and the 3-H(py) atoms, the pyridine rings in Cu(I) and Cu(II) complexes of MeL and EtL shift toward the Cu side as compared to those in Cu(I) and Cu(II) complexes of HL, leading to the significant differences in the nonbonding interatomic distances, H.H (between the 3-H(py) atoms), N.N (between the N(py) atoms), and C.C (between the 6-Me carbon atoms), the Cu-N(py), Cu-N(MeCN), and Cu-O bond distances, and the tilt of the pyridine rings. The copper coordination geometries in 4-6, where a SO(4) ligand chelates in a bidentate mode, are varied from a square pyramid of 4 to distorted trigonal bipyramids of 5 and 6. Such structural differences are not observed for 7-9, where two NO(3) ligands coordinate in a monodentate mode. The structures of 1-9 in solution are investigated by means of the electronic, (1)H NMR, and ESR spectroscopy. The (1)H NMR spectra show that the structures of 1-3 in the solid state are kept in solution with rapid coordination exchange of the pyridine rings. The electronic and the ESR spectra reveal the structural changes of 5 and 6 in solution. The bridgehead alkyl groups and 6-Me groups in the sterically hindered tripyridine ligand play important roles in modulating the copper coordination structures.  相似文献   

7.
《Electroanalysis》2018,30(3):479-485
Bicinchoninic acid (BCA) is widely used for determining the valence state of copper in biological systems and quantification of the total protein concentration (BCA assay). Despite its well‐known high selectivity of Cu(I) over Cu(II), the exact formation constants for Cu(I)(BCA)23− and Cu(II)(BCA)22− complexes remain uncertain. These uncertainties, affect the correct interpretations of the roles of copper in biological processes and the BCA assay data. By studying the voltammetric behaviors of Cu(I)(BCA)23− and Cu(II)(BCA)22−, we demonstrate that the apparent lack of redox reaction reversibility is caused by an adsorption wave of Cu(II)(BCA)22−. With the adsorption wave identified, we found that the Cu(I)/Cu(II) selectivity of BCA is essentially identical to another popular ligand, bathocuproinedisulfonic acid (BCS). Density functional theory calculation on the geometries of Cu(I)(BCA)23− and Cu(II)(BCA)22− rationalizes the preferential Cu(I) binding by BCA and the strong adsorption of the Cu(II)(BCA)22− complex at the glassy carbon electrode. Based on the shift in the standard reduction potential of free Cu(II)/Cu(I) upon binding to BCA, we affirm that the formation constants for Cu(I)(BCA)23− and Cu(II)(BCA)22− are 1017.2 and 108.9, respectively. Therefore, BCA can be chosen among various ligands for effective and reliable studies of the copper binding affinities of different biomolecules.  相似文献   

8.
The metal-to-ligand-charge-transfer (MLCT) excited state of Cu(I) diimine complexes is known to undergo structural reorganization, transforming from a pseudotetrahedral D(2d) symmetry in the ground state to a flattened D(2) symmetry in the MLCT state, which allows ligation with a solvent molecule, forming an exciplex intermediate. Therefore, the structural factors that influence the coordination geometry change and the solvent accessibility to the copper center in the MLCT state could be used to control the excited state properties. In this study, we investigated an extreme case of the steric hindrance caused by attaching bulky tert-butyl groups in bis(2,9-di-tert-butyl-1,10-phenanthroline)copper(I), [Cu(I)(dtbp)(2)](+). The two bulky tert-butyl groups on the dtbp ligand lock the MLCT state into the pseudotetrahedral coordination geometry and completely block the solvent access to the copper center in the MLCT state of [Cu(I)(dtbp)(2)](+). Using ultrafast transient absorption spectroscopy and time-resolved emission spectroscopy, we investigated the MLCT state property changes due to the steric hindrance and demonstrated that [Cu(I)(dtbp)(2)](+) exhibited a long-lived emission but no subpicosecond component that was previously assigned as the flattening of the pseudotetrahedral coordination geometry. This suggests the retention of its pseudotetrahedral D(2d) symmetry and the blockage of the solvent accessibility. We made a comparison between the excited state dynamics of [Cu(I)(dtbp)(2)](+) with its mono-tert-butyl counterpart, bis(2-tert-butyl-1,10-phenanthroline)copper(I) [Cu(I)(tbp)(2)](+). The subpicosecond component assigned to the flattening of the D(2d) coordination geometry in the MLCT excited state was again present in the latter because the absence of a tert-butyl on the phenanthroline allows flattening to the pseudotetrahedral coordination geometry. Unlike the [Cu(I)(dtbp)(2)](+), [Cu(I)(tbp)(2)](+) exhibited no detectable emission at room temperature in solution. These results provide new insights into the manipulation of various excited state properties in Cu diimine complexes by certain key structural factors, enabling optimization of these systems for solar energy conversion applications.  相似文献   

9.
A systematic study of the binding motifs of Cu(II) and Cu(I) to a methionine model peptide, namely, N-formylmethioninamide 1, has been carried out by quantum chemical computations. Geometries of the coordination modes obtained at the B3LYP/6-31G(d) level of theory are discussed in the context of copper coordination by the peptide backbone and the S atom of a methionine residue in peptides with special emphasis on Met35 of the amyloid-beta peptide (Abeta) of Alzheimer's disease. The relative binding free energies in the gas phase, DeltaG(g), are calculated at the B3LYP/6-311+G(2df,2p)//B3LYP/6-31G(d) level of theory, and the solvation affects are included by means of the COSMO model to obtain the relative binding energies in solution, DeltaG(aq). A free energy of binding, DeltaG(aq) = -19.4 kJ mol(-1), relative to aqueous Cu(II) and the free peptide is found for the most stable Cu(II)/Met complex, 12. The most stable Cu(I)/Met complex, 23, is bound by -15.6 kJ mol(-1) relative to the separated species. The reduction potential relative to the standard hydrogen electrode is estimated to be E degrees (12/23) = 0.41 V. On the basis of these results, the participation of Met35 as a low affinity binding site of Cu(II) in Abeta, and its role in the redox chemistry underlying Alzheimer's disease is discussed.  相似文献   

10.
We describe the synthesis and characterization of a new tetradentate Schiff base ligand obtained from 2,3-diaminopyridine and 5-methoxysalicylaldehyde. This ligand (H2L) reacted with nickel(II), copper(II), and zinc(II) acetates to give complexes. The ligand and its metal complexes were characterized using analytical, spectral data (UV–vis, IR, and mass spectroscopy), and cyclic voltammetry (CV). The crystal structure of the copper complex was elucidated by X-ray diffraction studies. The electrochemical behavior of these compounds, using CV, revealed that metal centers were distinguished by their intrinsic redox systems, e.g. Ni(II)/Ni(I), Cu(II)/Cu(I), and Zn(II)/Zn(I). Moreover, the electrocatalytic reactions of Ni(II) and Cu(II) complexes catalyze the oxidation of methanol and benzylic alcohol.  相似文献   

11.
The phosphido-bridged dicopper(I) complex {(PPP)Cu}2 has been synthesized and structurally characterized ([PPP]- = bis(2-di-iso-propylphosphinophenyl)phosphide). Cyclic voltammetry of {(PPP)Cu}2 in THF shows fully reversible oxidations at -1.02 V (Cu1.5Cu1.5/CuICuI) and -0.423 V (CuIICuII/Cu1.5Cu1.5). Chemical oxidation of {(PPP)Cu}2 by one electron yields the class III mixed-valence species [{(PPP)Cu}2]+ (EPR, UV-vis). Structural data establish an unexpectedly large change (0.538 A) in the Cu...Cu distance upon oxidation state. Oxidation of {(PPP)Cu}2 by two electrons yields the dication [{(PPP)Cu}2]2+, an antiferromagnetically coupled dicopper(II) complex. Maintenance of a pseudotetrahedral geometry that is midway between a square plane and an ideal tetrahedron at the copper centers, along with a high degree of flexibility at the phosphide hinges, allows for efficient access to CuICuI, Cu1.5Cu1.5, and CuIICuII redox states without the need for ligand exchange, substitution, or redistribution processes.  相似文献   

12.
The copper(II) and copper(I) complexes of the chelating ligands 2,6-bis(benzimidazol-2'-ylthiomethyl)pyridine (bbtmp) and N,N-bis(benzimidazol-2'-ylthioethyl)methylamine (bbtma) have been isolated and characterized by electronic and EPR spectra. The molecular structures of a redox pair of Cu(II/I) complexes, viz., [Cu(bbtmp)(NO(3))]NO(3), 1, and [Cu(bbtmp)]NO(3), 2, and of [Cu(bbtmp)Cl], 3, have been determined by single-crystal X-ray crystallography. The cation of the green complex [Cu(bbtmp)(NO(3))]NO(3) possesses an almost perfectly square planar coordination geometry in which the corners are occupied by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand and an oxygen atom of the nitrate ion. The light-yellow complex [Cu(bbtmp)]NO(3) contains copper(I) with trigonal planar coordination geometry constituted by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand. In the yellow chloride complex [Cu(bbtmp)Cl] the asymmetric unit consists of two complex molecules that are crystallographically independent. The coordination geometry of copper(I) in these molecules, in contrast to the nitrate, is tetrahedral, with pyridine and two benzimidazole nitrogen atoms of bbtmp ligand and the chloride ion occupying the apexes. The above coordination structures are unusual in that the thioether sulfurs are not engaged in coordination and the presence of two seven-membered chelate rings facilitates strong coordination of the benzimidazole nitrogens and discourage any distortion in Cu(II) coordination geometry. The solid-state coordination geometries are retained even in solution, as revealed by electronic, EPR, and (1)H NMR spectra. The electrochemical behavior of the present and other similar CuN(3) complexes has been examined, and the thermodynamic aspects of the electrode process are correlated to the stereochemical reorganizations accompanying the redox changes. The influence of coordinated pyridine and amine nitrogen atoms on the spectral and electrochemical properties has been discussed.  相似文献   

13.
The redox behaviour of copper(II) complexes with the open chain ligand, benzilbisthiosemicarbazone, and the macrocyclic one [3,4,10,11-tetraphenyl-1,2,5,8,9,12,13-octaazacyclotetradeca-7,14- dithione- 2,4,9,11-tetraene] has been explored by cyclic voltammetry. The half-wave potential values for the copper(II)/copper(I) redox couple and the spectral data obtained on dimethylsulfoxide (DMSO) solution agree with the superoxide dismutase (SOD)-mimetic activity of the complexes. The macrocyclic complexes show more positive reduction potential and more activity than the open chain derivatives. From our results it follows that the structure and conformation of ligand has influence on the redox potential of central atom in coordination compound. The changes in the coordination sphere are connected with the change of biological function of compounds represented by SOD-mimic activity. In addition, the L1H6 derivatives show quasireversible waves associated to Cu(II)/Cu(III) process.  相似文献   

14.
Due in large part to the lack of crystal structures of the amyloid-beta (Abeta) peptide and its complexes with Cu(II), Fe(II), and Zn(II), characterization of the metal-Abeta complex has been difficult. In this work, we investigated the complexation of Cu(II) by Abeta through tandem use of fluorescence and electron paramagnetic resonance (EPR) spectroscopies. EPR experiments indicate that Cu(II) bound to Abeta can be reduced to Cu(I) using sodium borohydride and that both Abeta-Cu(II) and Abeta-Cu(I) are chemically stable. Upon reduction of Cu(II) to Cu(I), the Abeta fluorescence, commonly reported to be quenched upon Abeta-Cu(II) complex formation, can be regenerated. The absence of the characteristic tyrosinate peak in the absorption spectra of Abeta-Cu(II) complexes provides evidence that the sole tyrosine residue in Abeta is not one of the four equatorial ligands bound to Cu(II), but remains close to the metal center, and its fluorescence is sensitive to the copper oxidation state and perturbations in the coordination sphere. Further analysis of the quenching and Cu(II) binding behaviors at different Cu(II) concentrations and in the presence of the competing ligand glycine offers evidence supporting the operation of two binding regimes which demonstrate different levels of fluorescence recovery upon addition of the reducing agent. We provide results that suggest the fluorescence quenching is likely caused by charge transfer processes. Thus, by using tyrosine to probe the coordination site, fluorescence spectroscopy provides valuable mechanistic insights into the oxidation state of copper ions bound to Abeta, the binding heterogeneity, and the influence of solution conditions on complex formation.  相似文献   

15.
The interaction between homocysteine (HCysSH) and Cu(II) leads to the formation of a yellow complex [Cu(I)(HCysS-SCysH)2]Cl (1) after redox processes in the Cu(II)-homocysteine system resulting in dimerization of the ligand and formation of a mononuclear Cu(I) complex with two dimers. The structure of (1) was obtained by IR-LD spectral analysis of a solid amorphous sample oriented in nematic liquid crystal medium. The original technique for orientation developed here and the polarized IR spectra thus obtained, permit the determination of the complexation sites and coordination mode of diamagnetic complexes. In the complex (1), Cu(I) is coordinated through the two O atoms of one COO- group of each of the ligands and the metal ion coordination sphere represents a distorted tetrahedron.  相似文献   

16.
The syntheses and structural details of tetraisopropoxyaluminates and tetra-tert-butoxyaluminates of nickel(II), copper(I), and copper(II) are reported. Within the nickel series, either Ni[Al(OiPr)4]2.2HOiPr, with nickel(II) in a distorted octahedral oxygen environment, or Ni[Al(OiPr)4]2.py, with nickel(II) in a square-pyramidal O4N coordination sphere, or Ni[(iPrO)(tBuO)3Al]2, with Ni(II) in a quasi-tetrahedral oxygen coordination, has been obtained. Another isolated complex is Ni[(iPrO)3AlOAl(OiPr)3].3py (with nickel(II) being sixfold-coordinated), which may also be described as a "NiO" species trapped by two Al(OiPr)3 Lewis acid-base systems stabilized at nickel by three pyridine donors. Copper(I) compounds have been isolated in three forms: [(iPrO)4Al]Cu.2py, [(tBuO)4Al]Cu.2py, and Cu2[(tBuO)4Al]2. In all of these compounds, the aluminate moiety behaves as a bidentate unit, creating a tetrahedrally distorted N2O2 copper environment in the pyridine adducts. In the base-free copper(I) tert-butoxyaluminate, a dicopper dumbbell [Cu-Cu 2.687(1) A] is present with two oxygen contacts on each of the copper atoms. Copper(II) alkoxyaluminates have been characterized either as Cu[(tBuO)4Al]2, {Cu(iPrO)[(iPrO)4Al]}2, and Cu[(tBuO)3(iPrO)Al]2 (copper being tetracoordinated by oxygen) or as [(iPrO)4Al]2Cu.py (pentacoordinated copper similar to the nickel derivative). Finally, a copper(II) hydroxyaluminate has been isolated, displaying pentacoordinate copper (O4N coordination sphere) by dimerization, with the formula {[(tBuO)4Al]Cu(OH).py}2. The formation of all of these isolated products is not always straightforward because some of these compounds in solution are subject to decomposition or are involved in equilibria. Besides NMR [copper(I) compounds], UV absorptions and magnetic moments are used to characterize the compounds.  相似文献   

17.
A series of Cu(II) and Cu(I)/Cu(II) complexes containing the cis-N(amine)(2)S(thiolate)(2) copper complex rac-2 has been synthesized to provide a basis for understanding the charge-transfer spectra of mixed-valence thiolate-bridged Cu(I)/Cu(II) complexes. In combination with Cu(Me(2)-13-N(4)ane), rac-2 yields a monobridged dinuclear homovalent adduct, rac-5, while reaction with CuCl yields the mixed-valance pentanuclear complex rac-6. In the presence of Cu(II)(acac)(2), chiral R,R-1 reacts to form a mixed-valence pentanuclear cation R,R-7. rac-6 exhibits a relatively short Cu(I). Cu(II) contact [2.8231(9) A] and associated structural features that suggest the presence of a weak Cu(I).Cu(II) interaction in a valence-trapped system. Additional structural features in rac-6 and R,R-7 include singly and doubly bridging thiolates, three- and four-coordinated Cu(I) ions, and varying Cu(I) ligand sets. These features extend the types and complexities of electronic absorptions significantly. Spectra of rac-6 and R,R-7 exhibit multiple overlapping absorptions over the entire visible and ultraviolet spectral regions studied, consonant with these observations. Trends resulting from variations in structure type and oxidation state permit a first approach toward developing a detailed assignment of the individual ligand Rydberg, LF, LMCT, MLCT, and possible MMCT absorptions in these complexes.  相似文献   

18.
The electrochemical behavior of the tris(pyridine) calix[6]arene Cu adducts is unique as compared to that of most classical Cu complexes in a strain-free environment. The presence of MeCN buried inside the cavity is a prerequisite for a quasi-reversible behavior in a dynamic mode. The CV behavior assisted by simulation outlines that the coordination adaptability of the Cu(II)/Cu(I) redox states is completely reversed, with a Td geometry enforced at either redox states. Hence, the supramolecular control of the Cu coordination by a protein-like pocket determines the dynamics of the electron transfer process, its thermodynamics, and the kinetics of the reorganizational barrier and generates a preorganized state for oxidation. This redox behavior corresponds to an overall induced-fit process generating a truly entatic highly oxidizing Cu(II) state through a protein-like strain by involvement of the secondary coordination sphere.  相似文献   

19.
Cu ion-exchanged SAPO-34 which is a highly active catalyst for selective reduction of NO with C3H6, was synthesized and the Cu ion was characterized in the SAPO-34 by ESR, XPS, IR, and XAFS. ESR study indicated that two kinds of Cu(II) with different environments exist in SAPO-34. The Cu(II) species disappeared immediately by C3H6 treatment and recovered by oxygen treatment. XAFS study indicated that most of the Cu(II) was reduced to Cu(I) under the presence of C3H6. These studies revealed that a selective NO reduction by C3H6 over SAPO-34 should proceed by the redox reaction of a copper ion between Cu(I) and Cu(II).  相似文献   

20.
The E. coli copper resistance protein PcoC enhances survival of a bacterium under conditions of extreme copper stress. This small protein has no cysteines, but does have an unusual methionine-rich sequence motif, suggesting that methionine ligation may be important in Cu binding. It is shown that PcoC binds both Cu(I) and Cu(II), in addition to binding Hg(II) and Ag(I). Previously crystallographic studies of PcoC had shown that the apo protein adopts a beta-barrel fold typical of that seen for blue-copper electron-transfer proteins. However, in contrast with electron-transfer proteins, where the Cu(I) and Cu(II) structures are nearly identical, X-ray absorption spectra show that the structures of the Cu site in reduced and oxidized PcoC are dramatically different. Cu(II) PcoC has a tetragonal Cu structure in which the Cu is coordinated to O or N ligands, including at least two histidine ligands. Cu(I) PcoC has a trigonal site with two methionine ligands. This is the first well-characterized example of a methionine-rich protein Cu binding site, demonstrating a new type of biological Cu coordination chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号